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Chapter 1

INTRODUCTION AND LITERATURE REVIEW

During steady operation of a liquid propellant rocket engine the

injected propellants are converted by various physical and chemical

processes into hot burned gases which are subsequently accelerated to

supersonic velocity by passing through a converging-diverging nozzle. The

operation of such an engine, however, is seldom perfectly smooth. Instead

the ouantities which describe the conditions inside the combustor (i.e.

pressure, density, temperature, etc.) are time-dependent and oscillatory.

Such oscillations can be of either a destructive or nondestructive nature.

Nondestructive unsteadiness is characterized by random fluctuations in the

flow properties and includes the phenomena of turbulence and combustion

noise. Unsteady operation of a destructive nature, on the other hand, is

characterized by organized oscillations in which there is a definite

correlation betweer the fluctuations at two different locations in the

combustor. Such o:cillations have a definite frequency and result in

additional thermal and mechanical loads that the system must withstand.

Unsteady operation of the destructive variety, known as combustion

instability, was first encountered in 1940. At that time a British group

testhng a small solid-propellant rocket motor observed sudden increases

of pressure to twice the expected level, enough to destroy a motor of

flight weight. Since that time every major rocket development program

has been plagued by combustion instability of some form. These

oscillations in the combustion chamber can have several detrimental effects.
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In some cases, particularly in solid-propellant rockets, instability

can cause the steady-state pressure to increase to a point at which the

rocket motor will explode. In liquid-propellant rocket chambers experi-

encing unstable combustion, heat transfer rates to the walls considerably

exceed the corresponding steady state heat transfer rates, resulting in

burn-out of the walls. If the chamber can survive these effects, mechanical

vibrations in the rocket system can cause mechanical failure or destroy the

effectiveness of the delicate control and guidance systems.

The phenomenon of combustion instability depends heavily upon the

unsteady behavior of the combustion process. The organized oscillations of

the gas within the chamber must be coupled with the combustion process in

such a way as to form a feedback loop. In this manner part of the energy

stored in the propellants becomes available to drive large amplitude

oscillations. An understanding of this coupling between the combustion

process and the wave motion is necessary in order to predict the stability

characteristics of rocket engines.

Combustion instability problems in liquid propellant rocket motors ¶

usually fall into one of three categories according to the frequency of

oscillation. Low frequency combustion instability, also known as chugging,

is characterized by frequencies ranging from ten to several hundred

hertz, nearly spatially uniform properties, and coupling with the feed

system of the roclet. This type of instability is less detrimental than

other forms, and the means of preventing it are well understood. Low

frequency instability will not be considered.

A second type of combustion instability, which is less frequently

observed, has a frequency of several hundred cycles per second. This

=. .
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type of oscillation is associated with the appearance of entropy waves

inside the combustion chamber.

The third and most important form of combustion instability is

known as high frequency or acoustic instability. As the name suggests,

this type of instability represents the case of forced oscillations of the

combustion chamber gases which are driven by the unsteady combustion process

and Interact with the resonance properties of the combustor geometry. The

observed frequencies, which are as high as 10,000 cycles per second, are

very close to those of the natural acoustic modes of a closed-ended

chamber of the same geometry as the one experiencing unstable combustion.

High frequency combustion instability is by far the most destructive and

is the type to be considered by the following analysis.

High frequency combustion instability can resemble any of the

following acoustic modes: (1) longitudinal, (2) transverse, and (3)

combined longitudinal-transverse modes. Longitudinal oscillations are

usually observed in chambers whose length to diameter ratio is much greater

than one; in this case the velocity fluctuations are parallel to the axis

of the chamber and the disturbances depend only on one space dimension.

For much shorter chambers the transverse mode of instability is most

frequently observed. Transverse oscillations in rocket motors are

,.naracterized by a component of the velocity-perturbation which is

perpendicular to the axis of the chamber but the disturbances can depend

upon three space dimensions. Such oscillations can take either of two

forms: (1) the standing form in which the nodal surfaces are stationary

and (2) the spinning form in which the nodal surfaces rotate in either the

clockwise or counterclockwise direction. Transverse combustion insta-

bility, particularly that resembling the first tangential mode, has been

ILI
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frequently encountered in modern rocket development programs and has been

the subject of much current research.

Historic Studies in the Problems of Combustion Instability

Since the early 1950's much experimental and analytical research

has been devoted to better understanding the phenomenon of high frequency

combustion instability. Most of the theories presented prior to 1966 were

restricted to circumstances in which the amplitudes of the pressure

oscillations were infinitesimally small in the linear regime. Prominent

among these are the pioneering studies of longitudinal instability by

Crocco El) as well as the studies of transverse instability by Scala [2),

Reardon [3), and Culick [4). A complete discussion of these theories is

given in the work of Zinn C5) and will not be repeated here.

Although linear theories provide the propulsion engineer with

considerable insight into the problem, their applicability and usefulness

in design is limited. The linear theories cannot provide answers to such

important problems as the limiting value of the pressure amplitude

attained by a small disturbance in the case of a linearly unstable engine,

or the effect of a finite-amplitude disturbance upon the behavior of a

linearly stable engine. In the latter case the result of many tests t

indicate that under certain conditions the introduction of sufficiently

large disturbances into a linearly stable engine can trigger combustion

instability. Another shortcoming of linear theories is the fact that

their predictions cannot be compared directly with available experimental

data; for, in the majority of cases, the experimental data is obtained

under conditions in which the combustion instability is fully developed

and in a non-linear regime. Therefore, theories accounting for these
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nonlinearities associated with combustion instability are needed. A

more detailed discussion of the nonlinear aspects of combustion instability

can be found in a work by Zinn [5].

In the field of finite amplitude (nonlinear) combustion instability,

mathematical difficulities have precluded any exact solutions, and

approximate methods and numerical analysis have been used almost exclusively.

For this reason publications in this field are scarce. Notable among these

is the work of Maslen and Moore [6) who studied the behavior of finite

amplitude transverse waves in a circular cylinder. Their major conclusion

was that, unlike longitudinal oscillations, transverse waves do not steepen

to form shock waves. Maslen and Moore, however, considered only fluid

mechanical effects; they did not consider the influences of the combustion

process, the steady state flow, and the nozzle which are so important in

the analysis of combustion instability problems. Nevertheless, pressure

recordings taken from engines experiencing transverse instability reveal

the presence of continuous pressure waves similar in form to those

predicted by Maslen and Moore.

One of the first nonlinear analyses to include the effects of

the combustion process and the resulting steady state flow was performed

by Priem and Guentert [7]. In this investigation, the problem was made

one-dimensional by considering the behavior of tangential waves traveling

in a narrow annular combustor of a liquid propellant rocket motor. They

used a computer to solve numerically the resulting nonlinear equations for

various values of the parameters involved. Due to the many assumptions

involved in the derivation of the one-dimensional equations, the results

of this investigation are open to question.
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The successful use of the time-lag concept (see Crocco [1]) in the

linear theories prompted a number of researchers to apply this model to

the analysis of non-linear combustion instability. By considering a

chamber with a concentrated cvnbustion zone and a short nozzle, Sirignano

[8] demonstrated the existance of continuous, finite-amplitude, longitudinal

periodic waves. These solutions were shown to be unstable, however, thus

indicating the possibility of triggering longitudinal oscillations,

Mitchell [91 extended the work of Sirignano to Include the possibility of

discontinuous solutions. In this manner he was able to show that the final

form of triggered longitudinal instability consisted of shock waves moving

back and forth along the combustion chamber. Mitchell also considered the V
more realistic case of distributed combustion. [

In the analyses of Priem, Sirignano, and Mitchell the oscillatios is

were dependent on only one space dimension. One of the first researchers

to study finite-amplitude three-dimensional- combustion oscillations was

Zinn [5) whose work is an extension of the linear transverse theories and

Sthe analysis of Maslen and Moore. Using Crocco's time lag model Zinn

investigated the nonlinear behavior of transverse waves in a chamber withI
a concentrated combustion zone at the injector end and an arbitrary

converging-diverging nozzle at the other end. In this case, it was

necessary to extend Croccx's burning rate expression and transverse nozzle

admittance relation to obtain the appropriate boundary conditions for the

case when the flow oscillations are of finite size. As a rosult of this

analysis Zinn was able to prove the existance of three dimensional

finite-amplitude continuous waves which are periodic in time. In

addition, he was able to prove the possibility of triggering combustion

oscillations. An analytical criterion for the determination of the

~l
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stability of such waves was derived, but because of its complicated form

and the limited capacity of available computers no specific numerical

results were obtained.

In more recent years other investigators such as Burstein [10)

* ,, have attempted to solve numerically the equations describing instabilities

that depend on two space dimensions. Although the resulting solutions

resemble experimentally observed combustion instability, this method

requires excessive computer time, and studies of this type for three-

dimensional oscillations will have to await the development of a much

faster breed of computers.

In a recent publication by Powell [11), the problem of analytically

and numerically analyzing multidimensional non-linear combustion instability

was investigated. The problem in doing this is that a system of non-

linear coupled partial differential equations whose solutions must
satisfy a complicated set of boundary conditions governs the phenomena of

combustioneinstability. These boundary conditions may describe the

t. unsteady burning process of the wall of a solid propellant rocket motor;

the conditions at an idealized concentrated combustion zone of a liquid-

propellant rocket engine; or the unsteady flow of the entrance of a

converging-diverging nozzle. Previously, in an effort to obtain analytical
solutions to various combustion instability problems, investigators have

been forced to simplify the original problem to such an extent that it no

longer resembled the real problem that originally was to be solved. Powell

proposed a method to perform a nonlinear stability analysis with relative

ease. This method, applicable to both linear and non linear problems with

complicated boundary conditions, was a modified form of the classical

Galerkin method. The Galerkin method [11) is an approximate mathematical

()



technique which has been successfully employed in the solution of various

engineering problems in the field of acoustics. Powell used this method

to specifically study the non-linear behavior of combustion driven

oscillations in cylindrical combustion chambers in which the liquid

propellants are injected uniformly across the injector face and the

combustion process is distributed throughout the combustion chamber. Based

upon the results of his second and third order theories, the following

nonlinear mechanisms were found to be important in determining the non-

linear stability characteristics of the system: (1) the transfer of energy

between modes, (2) the self-coupling of a mode with itself and (3) a non-

linear combustion mass source. Powell found that the self-coupling

mechanism was important in the initiation of triggered instability, while

the non-linear driving mechanism was important in the determination of the

final amplitude of triggered instability.

Statement of the Problem

In this thesis, the problem of velocity-sensitive instability will

be considered. Based upon previous work on this problem, only transverse

oscillations will be considered due to mathematical simplicities. Also,

the specific geometry of the combustion chamber to be analyzed will be

annular or ring-like. The purpose of this thesis is to investigate the

mechanisms which cause these instabilities due to the combustion process

in a liquid propellant annular combustion chamber and attempt to state

which mechanisms or conditions impose the greatest effect upon stability

of combustion.

In Chapter 2 of mhas thesis, mhe novernin) equations of fluid eao

motion (i.e., balance of mass and momentum) are stated. From the equations,
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the general acoustic wave equation for non-linear combustion is derived.

V In this derivation, both steady state and deviations from the steady-state

conditions are considered and their effects incorporated into the general

acoustic wave equation.

In Chapter 3, the Galerkin method is used to obtain, from the

general acoustic equation of Chapter 2, equations governing the modal

amplitudes associated with the first two modes of transverse oscillation

in a thin annular combustion chamber. These equations for the annular

combustion chamber are solved numerically by the use of a Runge-Kutta

program for various conditions.

In Chapter 4, a set of approximate equations are derived from the

modal amplitude equations presented in Chapter 3 by use of the two-variable 7

perturbation technique. These resulting approximate equations are

expressed both in the modal amplitude and amplitude-phase angle form. In

this chapter, four special cases are presented for which closed-form

solutions can be found. These four cases are (1) standing wave--no

combustion, (2) standing wave--no gas dynamic nonlinearities, (3)

traveling wave--no combustion, and (4) traveling wave--no gas dynamic

nonlinearities. For problems not falling within the above categories,

a numerical analysis is employed to solve approximate equations.

In Chapter 5, the results contained in the previous two chapters

are discussed and compared. Stability limits are obtained and the effectSof neglecting various physical effects are discussed. In addition, the

accuracy of the perturbation method is evaluated. A summary of the

research contained in this thesis is presented in this chapter.

'U• In Chapter 6, a statement of conclusions is made along with

recommendations for future research in this area.

0



Chapter 2 ""

DERIVATION OF THE GOVERNING ACOUSTIC WAVE EQUATION

In order to investigate the non-3inear combustion instabilities

that occur in liquid propellant rocket engines, one must start with the

balance laws of mass and momentum. Also, for this problem, a constitutive

equation was formulated relating pressure and density. Mathematically,

these principles are respectively

+ (p u) B* (2.1)

(7aut + - -U rp (2.2)

* *2*
p a p, (2,3)

where

p - gas density

t - time

V - del operator of the system + - j a

u -velocity of the gas

B - fuel drop burning rate per unit volume

p -,pressure of the gas

*2
a . constant of proportionality (in this case - speed of

sound).

10
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The * representation denotes that the above physical quantities are

dimensional. Equations (2.1) - (2.3) are based on the assumption that

the fuel drops serve only as a source of mass for the gas phase.

Interphase transfer of momentum and energy are neglected.

Combining equations (2.2) and (2.3), the resulting equation is

au *2
U ) a- O .(2 .4 )

For the physical situation depicted in Figure 1

inlet

combustion chamber

variable area cross section

fuel drops enter here
through injector plates

Figure 1. Schematic of a Liquid Propellant Combustion Chamber

A'.'
. . J
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A convenient non-dimensionalization of the variables is as follows:

p a POp (p0 - initial density of gas)

L*
P* *2

pu a

0 p

B L-w B.

Substituting these non-dimensional relations into equations (2.1), (2.3),

and (2.4), the results are

a. + (p't) B (2.5)
at

p p (2.7)

where the unstarred quantities are dimensionless.

I L
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Dividing through by density 0, equation (2.6) becomes

TF+ u * 
(2.8)

Since,

P

the governing equations can be summarized as

Ž-. + . (t) B (2.9)

au
-4 4

+ u . t -P (2.10)at

p p. (2.11)

It w•ll now be shown that to the order of approximation inherent

in these equations, the flow is irrotational, that is ý x u = 0. To do

this, take the curl of equation (2.10) and set it equal to zero. The

resulting equation becomes

-x + * U1 Z V x p 0. (2.12)

Since the curl of any gradient is zero. This may be rewritten as

l- + (-u • U) 0 . (2.ý1 )
at

S777 7747 -- ---
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The vortinity i is defined to be

x u. (2.14)

Thus,

S(2.15)3t TF

From the vector identity

~ ~ - x (~x

it follows that

u • • = 2 ) . i x i.

Therefore,

x ) x i]. (2.17)

Recognizing that the curl of any gradient is zero, equation (2.17)

reduces to

U s, ng.te) x (v ector.id

Using the vector identity

V x x +
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equation (2.18) can be expressed as

i ~~+ u ; •] (2.19)

Therefore, equation (2.13) becomes

at

Equation (2.20) can now be modified by using the definition for the total

(comoving) derivative which is
:14

-- = 't + u •0• .

Substituting this expression into equation (2.20) and simplifying, the

resulting equation becomes

.0 U • ) -U +• '). (2 • ).21)

Rewriting u (0 . i) as i[t (0 x U)] which is zero since th^ divergence

of the curl of any vector is zero, equation (2.21) becomes

.Z" (() (2.22)

The Implications of this equation for a fluid starting from rest are as

follows. At the initial instant of time (t = 0), the vorticity of any

*!
-~ .1- ~ C t!--
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fluid particle will be zero. Thus, the time derivative of the vorticity

of the particle will be zero, implying that 0 at t 0 0. Since

30 and 0•a 0 at t a 0, it follows that I=0 at the next instant of

time. By induction, it can be shown that 0 for all time unless the

velocity gradient becomes infinite for any t 0. It is assumed in what

follows that this does not occur and the flow is treated as irrotational.

Since irrotationality has been proven, the velocity vector u can

be expressed as

U 1 : (2.23)

where 0 is the velocity potential. Substituting equation (2.23) into the

left hand side of equation (2.10), the result is

au - au+
+ u u u(5)

0) 2UVL].VJ - 'xI (2.24)

For irrotational flow ( : 0), the right hand side of equation (2.24)

becomes

+ 110-P (2.25)

Therefore, equation (2.10) can be written as

+ + a 0 (2.26) j

at -t
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Spatially integrating equation (2.26) produces

+ Is + tot P MM) (2,27)

where q(t) is a function of integration. rrom equation (2.23), it can

be seen that an arbitrary function of time can be added to ý without

affecting the result for u. Thus, a(t) could be absorbed into •, The

same thing is aceomplishad by setting a ' 0 which results in

C P = t (2.28)

or

p ,(2,29)

Thus, P and u aro both known as functions of F. From equation (2.9), the

govorning equation for * can be written symbolically as

3p

+ pV• +÷ P* - B (2.0.a)

ti+ is~
Pzp . (2.30.b)

Rather than combininj these quantities immediately, it is conveiiient to

first make further simplifications based on the nature of the physical

problem that it is desired to analyze.
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Steady State Solution

First, the steady state solution of equations (2,30) corresponding

to purely axial motion will be found. Define the steady-state velocity

potential j by

where c (assumed small) is the measure of the deviation of the density

from its initial value (see equation 2.32 below). The bar notation will

represent steady-state conditions. The steady-state burning rate ý is

defined from

B =(1)* (2.32)

While many other situations are possible, attention will be confined in

the present work to the case when 0 0(c). To indicate this let

0 ( 1 = 1)). (2.33)

Thus, the burning rate B can be expressed as

B 2 CO. (2.34)

Equation (2.30.b) can now be written

0 g e4• (2.35)

Using the Taylor series expansion for the exponential function and

retaining only the first two terms, equation (2.35) becomes
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"1 + 2 t ' (2.36)

Substituting equations (2.31), (2.34), and (2.36) into equation (2.30.a)

and dividing the result by c yields

d * di da fd\ ÷- (2.37)

or

('2 72 C . . .+ o, (2.38)

Retainling only terms of 001) produces

(2. 39)
dz,

F'or simplicity, only the case of uniformly distributed combustion (i.e.

constant) will be considered. Thus, integrating equation (2.39) one

obtains

dz a z + C1di (2,.0)

where • is the steady state velocity of the gas.

At the Injector (Z = 0), 0 0. Thus, C1  0 and

u 3 05. (2.41)do
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Devi&tlons from Ste&& tate

it is now desired to investigate the stability of the steady

state solution discussed above. Toward this ends an additional

velocity potential related to perturbations from the steady state is

defined by the equation

C c + *(x%, y, z, t)]. (2.42)

A perturbation bu-ning rate B is also defined by the equation

B W + tC. (2.43)

It is assumed that w = O) and this is indicated by defining a function

o such that o 0(1) and w = oc. Then equation (2.43) becomes

B = + co) (2.44)

A Taking the gradient of equation (2.42), one obtains

ccý + 03(2.45)

or

a z~;: +~) (2.46)

rrom equation (2,.42), the time derivative of * can be expressed as

at . (2.47)
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Substituting the equations (2.46) and (2.47) into equation (2.30.b)

and simplifying, one obtains

-[~ +- . 2(G2 + 2a 8 + '
p= p ae • . (2.48)

Expanding (2.48) in a Taylor series and neglecting terms of O(U ) and

higher produces the expression

p 0 1 ~at a2 [½ri+ t) j. (2.49)

"Substituting equations (2.42), (2.44), and (2.48) into equation (2.30.a)

and dividing the result by c leads to

- + W .• 5 + • , . ) -+ • 2
r a 2r- azat a ½ a

+[ - C a + C2+ + -

+( ý2.) + (G-1 +* -C;

+ u + + f ( J + e0. (2.50)

suNeglecting all terms of 0( 2 ) and higher and recalling from the steady-

state solution that At = ;z and z y

dzd

i-7
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V0+C u 2 T. I 'g t 2

- t at2

;~.,f~ 4 u ±+ + ~ .2 + -c (2.51)at v2r r t •

Substituting

aatV (2.52)

into equation (2.51), results in

720 +2*i azat at

+ a (V2 - ) u-a (2.53)

where only terms of 0(1) and 0(e) have been retained. Equation (2.53) can

be further simplified by observing that 72f = , 0(b).

Thus, the last term of equation (2.53) can be written

2 a4
2o (t,+0c)-'. 0(t2).

Since the other terms of 0(e 2 ) have already been neglected, consistency

requires that this term be deleted and the equation be rewritten as

T 2 2a + . a -cc .2• + c " 'at azat at (2.54)

0

•=_ I6
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In this thesis. attention will be confined to transverse instability.

For this situation

IV # (x, y, t). (2.55)

Therefore, equation (2.54) becomes

i4. at .c[(.~ (2.56)

To account approximately for frequency changes due to baffles, nozzle

shapes, etc., a correction term of the form

£ k t,) (2.57)

was introduced into equation (2.56). This form, one of many possible, was

Schosen so that the linearized form of equation (2.56) would reduce to Love's

equation for a one-dimensional problem. This linearized form of (2.56) is

-2 32 34 0
'a aaX X =at 0 (2.58)

Thus, it can be secn that the value K will affect the acoustic frequencies.

Physically, this is the purpose of baffles, nozzle shapes, and other

physical parts of the combustion chamber. Therefore, inserting the

correction term into equation (2.56), the resulting equation becomes

.-- K 2t -- (2.59)
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where K is the correction factor. This non-linear wave equation will be

the basis for numerically and analytically investigating the transverse

combustion stability problems occurring in liquid propellant rocket

engines.

i9

"1



Chapter 3

DERIVATION OF WAVE EQUATIONS BASED UPON AN
t ANNULAR COMBUSTION CHAMBER

In Chapter 2, there were no restrictions concerning the geometry

of the combustion chamber in the derivation of the acoustic wave

equation. In this chapter, however, a set of equations will be developed

based upon a narrow annular combustion chamber. A typical cross-section

for such a combustion chamber is shown in Figure 2 below in dimensional

and dimensionless form.

(a) Dimensional (b) Dimensionless

Figure 2. Dimensional and Dimensionless Form of a Circular

Cylindrical Combustion Chamber

In Figure 2 (a), the dimensional quantities are

r - radius of a typical point in the combustion chamber

R - inside radius of the combustion chamber

b - thickness of combustion chamber's cross-section.

25

C,



26

In Figure 2 (b), the dimensionleso quantities are

r - non-dimensional radius of a typical point

R .1
"R

b

R

The first major assumption to be made in the geometry of the combustion

chamber is

b << 1 (3.1)

which states that the circular cylinder can be thought of as a thin

(ring-like) annulus.

Define the characteristic length L* by

L R. (3.2)

In restricting the analysis to an annulus, a transformation to polar

coordinates is convenient. Recall that the gradient and Laplacian

operators in polar coordinates are

4.
r 3r r 50 z az

(3.3)

32 a 1 a2  a2

The second major assumption for the simplification of the velocity

potential Is restricting

AMS
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* ' *8,t)

14 (3.4)

Therefore, using the operators of equations (3.3) on the function of

equation (3.4), the results are

(3.5)
a2

924 x •

Substituting the results of equation (3.5) into thv general acoustic wave

equation (2.58), "the modified wave equation becomes

a2a

- ý4 at 30 303 -t _a " 2 t a "•'J (3.6)

Now, express the velocity vector

u X u + u (3.7)

where u - steady-state velocity vector

o u - perturbation velocity vector.

From the steady state solution in Chapter 2, the velocity vector was

defined as

z , •. (3.8)

o
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Define the perturbation velocity vector by

u = 0. e (3.9)

Substituting equation (3.8) and (3.9) into equation (3.7) and using

equation (2.23) results in

dý (3.10u , €dz z 3- e . (3.10)

To determine only the transverse velocity component of the perturbation

velocity vector, subtract the perturbed velocity component along the

axial (z) direction of the chamber from the total perturbation velocity

vector. Thus,

.U -uez. (3.11)

In this case, since u u(e, t) only, there is no perturbed velocity

component in the axial direction; therefore,

ut - ae ee. (3.12)

It is now desired to find the burning rate a in terms of the parameters

in the wave equation. To obtain this expression, assume velocity sensitive

combustion with no history effects. Mathematically, the burning-rate

function for velocity-sensitive combustion will be expressed by the purely

phenomenological equation

IJo!
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a n f (3.13)

where n is called the interaction index.

Using the derived results for the general time-delay integral

(discussed in Appendix A), the burning rate with history effects

accounted for by a simple time delay Is

to u'22u ,

where the subscript T represents the time delay. For simplicity, it

will be assumed that

(u ,2 \ u t ,2

Then, the burning rate can be expressed as

n 2] (3.16)

where j 0 - no time delay

I - time delay.

Therefore, substituting equation (3.16) into equation (3.6), equation

(3.6) can be rewritten

............
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at , + C +2 Tt 9ata±eae~

- le (3.17)

There is no closed form solution of equation (3.17) that appears likely.'

The main purpose of the present work is to determine the modifications of

solutions of the usual acoustic wave equations that are caused by the

presense of the nonlinear terms multiplied by c in equation (3.17).

Thus, rather than attempt a finite difference numerical solution of

equation (3.17), the following prouedure was adopted.

The solution is represented by the T'ourier series

4(e, t) = f 1 (t) Cos e + f2(t) cos 20 + g,(t) sin e

+ g2 (t) sin 20 ÷ . . . (3.+8)

and initial conditions are chosen such that in the absence of the nonlinear

terms, the exact solution can be formed using only the first two terms of

the Fourier series. Because of the quadratic nature of the non-linearities,

the second two terms in equation (3.18) represent a complete first order

correction to the acoustic solution due to non-linear gas-dynamic and

conmbustion effects. Only the first four terms in equation (3.18) are,

therefore, retained and the approximate solution determined by this method

is the simplest one capable of il3ustrating the influence of the nonlinear
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terms. The approximation can, of course, be improved by retaining

additional terms in equation (3.18) but this is not investigated.

Substituting equation (3.13) into equation (3.17) and using

the multiple angle formulas to simplify terms containing products of

trigrometric functions, one obtains

{2: df rdf df dg dg 1
dt2+ f + + ~2c -L~* 1 a+g~+ 1 L

÷Ir I• dt ÷ •[2 -d I~ -T +• 9 t2 • -di f+ 1 sFI n

+ En 2nc[fIf2 + - 2jcnwI It1T2¶ +n :1:j }Co

dddf dg df g

+g +Kc t, + 2c 1 - + f g2  f gji}_zinGfd2E dfUr d I dl dt 2f

d2dt

+ ½wc + 2 -e fjc 9 f2]e~ } fo sin

d2g f g dg d2f

-gJ Enj 1 1 2] * wct 1 g 12]}sn 20 co 20 (,g

If I TS Il
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Equation (3.49) 13 a summation of terms composed of sme function of

time t and a term containing 0 variation. Since the equation must be
valid for all values of 0, each of the time dependent coefficients

of the 9-terms must individually be equal to zero. Therefore, four

ordinary differential equations governing the time-dependent modal

amplitudes f, g&is f 2 and g2 emmerge from this analysis as the governing

equations to be used for analysis of instability in an annular combustion

chamber. These equations are

A

42f

S; 2- [f ,- .2_2]. jf 2T + 1 1 2 j A
(3.20.a)

d29 dg 1 df dg2 dfd
dt ~+ 2 lId ,dt 2d

2.Lt

d 9
+ MdFn + 2ncw [fig2  f 2g1] - 2jf-n [E±.Tn 2T f2,jI 0

3.20.b)

d2f df [ dg df ]d 2f

t tdt ldt +4K- I

I ]cn[~ -f j 2> jn 2 f 2] 0 (3.20.0)

19 - T I

*rV ,
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d2  g g dg df dg I dd
-. 9 1 ~..... - L + f I * -d j 4 2dTR 2+T dt"

If 1~D L'1i " fI tit~~ (3.20-d)

In the following work only instantaneous combustion will be considered.

Thus, the approptiate equations are equations (3.20) with 0 * O. These

equations are recapitulated below.

d2 f df df df dg
2 t L+f + g gg:dt 2dt t 2 dt dtj

d2 f
+ Ke9- + 2n4w [fIf 2 + g1 g 2  = 0 (3.21.a)

d2gd df dgZ d

-77 + , + ]It2c Ltfg t f2ddt did2 dt2I ]

d29~

+ K1e + 2ncw lfIg2 - f 291J 0 (3.21.b)

d2f +d4fd+g df

a1.-I 2~g dt L e 19 t Id

d2 f r
+ 4 M + -4n [ f2 0 (3.21.c)

El0
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d2gr df d

• ~The equations of (3.21) were solved numerically by the use of the

quartic (fourt:h-order) Runge-1<utta method. To use this method, the

equat~ions of (3.21) are modified by defining the quantities

dt 1

df

"--" a2

dt 1

•ii Substituting these expressions into equations (3.20) and solving these

equations for- the highest derivative (in this case - second order,), we get

S= f

[-f1 - •(a 1 ) - 2ci f 2 (a1 ) + f 1(a 2 ) + g2 (b1 )

+ g1 (b 2 )) - 2new(flf 2 + glg2 )] /(1 t K.•)

*1a

aI-



L

35

db
- x l - W(b1 ) " 2ci g2 (a1 ) ÷ f1(b2 ) - g1 (a2 )

- ':() I 2nc g9(2, - f 2A)],(l M +Vs)

2"' 4'f2 ; (a2 "i €l (b) f '(al)d

-'cnj1 2 - f1j/(I + 41W)

d. L 1-42 - 2(b2 + Ci(1(a1 fI(b

+ ;nc (f g1 ,] /(1 + 4 ,C) (3.23)

ithere i is the gas-dynamic index.

By the development of a computer program incorporating the Runge-

Kutta algorithm which can solve systems of first-order ordinary differen-

tial equations, the eight equations (3.22) and (3.23) were numerically

solved for the eight variables a,, a2 , b1 , 2, F1, F2, g1, and g2 "

Different cases involving varying the gas-dynamic index, interaction

index, the correction variable (K), and the order term (epsilon) will be

discussed and compared with the perturbation method of solution in a

later chapter. In Appendix B, a sample program listing this calculation

appears.

- Y



Chapter 4

TWO-VARIABLE PERTURBATION4 METHOD APPLIED TO THE

ACOUSTIC WAVE EQUATIONS

In this chapter, a set of approximate equations will be developed

from the governing equations for, the modal amplitudes (3.21), by the use

of the two-variable perturbation method. The two-variable method is well

suited to this type problem since one expects the solution to consist of

sinusoidal functions with slowly varying amplitude. Applying this method,

define two variables representing time

Therefore, the four modal amplitudes would now be

f 3f 1(to~)

f 1

y2 a i2tabsonh

91 91g(&'n) •

2 = 92 (E'n)'. (4.2)

By applying the chain rule of differentiation, it can be shown that !

d Z aZ az(43

and

36



37
4dt a 2s Mcn (4.4)

where Z m fl. ;2  1 5 9, £2 respectively for each of the above equations.

By substituting equations (4.3) and (4.4) for each modal amplitude into
equations (3.21) and keeping terms only of 0(1) and 0(c), the resulting

equations become

1fl 2 1+ + 2f.1 +2f 2  ÷ 2 f  2 + 2 ----

2g1 *g __ scn a + t 19

K f1+ 2n(f f g

2g1 2g1 3+ + O + 2f 1 j.of
j~~~-+ 2f 2g,~n3f

g2F + 2 2 + a2 f + 292  "E--

a- 2f2

2 -aK + K 2f~1 - 1 ) 1

OF 22g2•2 ag2  afl 1 gl

a 2 g -

+ 4Ka.t. - ;n( 1,g1)J 0 . (4.5)
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From the straight-forward perturbation method, define the modal amplitudes

by the series expansions

Sfl X f 1o(c'n) + C fll(con) + . 0 ,

f2 f 20 (*n) + C f 2 1 (qn) + , . .

91 = g1 0 (crs) + C gl ( ) . .

g2 =g 2 0 (tsn) + e g 2 1 (,Tn) + . , . , (4.6)

Again by applying the rules of differentiation, it can be shown that

Z aT + M

-2Z a2K

j =

where Z = f1 9 f2 v gl* g2

T =f 10 1 f 20, g10 0 g20

and K = f11 1 P2 1 ' g11 6 921' respectively.

Substituting the expressions of (4.6) and (4.7) into equations (4.5) and

keeping terms only of 0(1) and O(e), the resulting equations become

! ,
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O~f 10 OfD

111"10 - , 10 1L0

at 0 ag 2 0  f0

-" )+f20 + l + 2 SIO + 0 K 2 03

+ 2f0 1 20  + a 10 2g aS0 +g2 a - 10

+ 2n'(ff1 0 20 + 2l1020) 0

a2 32g a2gO -2 afoS+ lo € + gil + 2 "••"+ a rc+ 292

90 af aglo 9g,o0
ag2 1 2fO 2f f20 320 

0

-•!• tt20÷ €• 2fl + 2 K O•-

2 1o , -2910 20 a -&

* +12* C•"-'-+•21 2 0)3- • ÷ '•

+ •w(fO2g2 20 f 2 0 go00)3

" o2f *' -" azo ' -2o 2 •
101  20 -af2 1-

20 21+4 a~ )

ioaf *a+~A~ft1'i 10+g:+;Wp 20 +(4.g8)f2)

By separating the of in the eqaatons of (4.8) and +

equating both sets of terms equal to zero, the resulting equations become !

a2t a=0a
-2 +fl 4 +09

-10

Bysprtn h em f01 n 0c nteeutoso 48 n
eqatn bow..4th se&

4
ts of tem eqa to 2 o the reutn eqaton become
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ai + SlO 0

)2f20

a2S 20

(4.9.a)

32f 32f1  2flo 
-2 O

+gl f82 a2eo f a2""tT- "" - 2f 26t 2f o

-2g 2g ao 10g20 o - a 2g 0 1 2 1 0 f2 0 + 109'20)

2 a glo afl
o 1 - 2)2g U2 0

af • -- glO o 32

+2 Og O 202 10

+f10 . + 2 iK 2 a -- 2n(f 1 0g 20  f 2 0 g1 ,0 )

a~f a - a2f20 a 1
+~~ 4 o20310 a

30n at 10 at 10 at

-~2 a~g o 
(49+ 4 -2 39205 ) 10

2+

4

30n a 10 a
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The equations of (4.9.a) are linear second-order differential equations.

Therefore, it can be shown that assuming the appropriate form of a solu-

tion, the results become

f a A (n) cos g + BC(ri) sin g

glO = A2 (n) cos E + B2 (n) sin

f20 a A3 (n) cos 2C + B3(n) sin 2&

g2 0 2 A4 (n) cos 2& + B4 (n) sin 2&. (4.10)

Substituting (4.10) into (4.9.b) and using the multiple-angle formulas

yields

4A A1  1 1
11+ f L1'2 d-n- T A1 + =2A 1A3 + BIB3 )

-(BB 3 + A A3 ) + t(A 2AA + B2 B4 ) - (A2A + B2B

-- 1 si 24

"=2KB1 + nw[=-(AiB3 - A BI) +Z-(A2B - BA sin

-2(gB -+ Ag + .12(A B, - AB) A B -+( ABBldn 2 1  31 13 13 A31B

+ '(A B -A B ) +(A B -B 2A) 4
22 .4 2 2 4 2 4421

+n-424 jA 3 1a3) + (A 2A4 + B32 B4)]] Cos +
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B.1- 1

3C2 9iI -- 2 4 *flE 4

-(AIA 4 + BI 4 ) + (A2 A3 + B2B3 ) - •(A 2 A3 + B2B3 )

KB+ w[ý 14 424,A1 - AB )II sin t

i2KE2 nw1-(AB -1 A)- 41 A2B3  32)

[WdB 2  1-
-2 - + V + 20B - B A,) + (A B4  A AB 1

-(A 2 B3 - B2 A3 ) - .A 3B2 - A2 B3 ) - 2

IF( AIA +BIB4 ) -<A 3 A2 + B2 B3 )B] cos ..

32f dA21 - 3 1-
----2 + 4f21 -2 "L-•- 2 -3)

+ 1 [1 2 2 - A 2) -B 2 -A 2)] + gK(-4•)

+ 1n(A2B - ABIB1]sin 2• -2[2---+--(D)t~ABA

;: ~~+2K(-4•A 3) t •-o••2-B - 2 A 2m-B.) os2+.,,

2 221

1 dAB 1- 11

-2 + g2 1  - 2 - i-2 4  .~BB 1 2

t1 1 1 2 "

+j:BIB 2 - 4XA2 ) 2K[-4B4 ) -B n2)AIB2-A 2 B)]c sin 2+

3)B +i +4w2 1 1

D2F + 4921 = - 2T . •:- + 4+B 2)
+ B iIt A2 , . ) K['4 2 1221 sn2
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where + . . . indicates terms multiplied by sines and cosines of integral

multiples of F other than those shown. The particular solutions corre-

sponding to the terms shown on the right-hand sides of (4.11) will contain

terms proportional to 9 sin nt or C cos n& En = 1 for (4.1l.a, b), nT 2

for (4.ll.c, d)0. Thus, the second approximation would be unbounded for

large C while the first approximation is bounded for all E. These

unbounded terms are called singular terms. The terms on the right-hand

sides of (4.11) indicated by + • . . do not lead to singular terms.

The idea of a perturbation solution is that higher order terms in

the series solution represent small corrections to thIs first term to

obtain a uniformly valid expansion. The presence of this singularity

causes this fundamental idea to be violated. Therefore, since the expres-

sions of n dependency are independent of the variable causing the singu-

larity, the n-dependent expressions can be set individually equal to zero

to avoid this problem. Therefore, from equations (4.11), the resulting

equations, which are eight ordinary first-order differential equations

having n dependency, become

dBI + l ,- + A B B1A A B + A2BA B]

Vd, 2 2 1 2
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+ 1fA•Aa+A 3  + A2A4  D B3 4  0

IA 1- 1 3

r-+.t. 2 4÷B 2 ÷AA, ÷B1B A2 A3 B2 B33

+ 4 i"t-AB + AB AB - A3B2 0
2 14 4 1 2 3 3 2

dB=2 1- 1 1
'VB -. A 2  4 t- 4 1 4 34 1  2 A2 3 + 3B

2 1-•AA + BB -A 3 A2 -B B 3  0

dA

B3 1- 2.
,,+ - +2A -+ B42

2 + B A

3A 3_ T[ .2 A12" 1

+ 1 wnAiB1 S A2 B2  0

dB
+ 4KA3 + "'A B2  A AB)

+ 1 - CA 2  B 2  A 2 + B 2 ) 0

dA 4  1- 4B 1
+ - K +A 14CA 2)B

+ Iwn A 1B 2 A2 B 1 3 0

n- &4K4 W2 WA BA, + A B3)
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-rnCA1 A ~BlB2 O (4.12)

Since equations (4.12) are first-order nonlinear ordinary differential

eq•ations, the fourth-order Runge-Kutta program, previously developed,

can be used to solve for the modal amplitude coefficients. By finding

these coefficients for various points in time, a relation between the

results of equation (3.21) and equation (4.12) can be observed to the

approximnation of ordetr P.

Solving equations (4.12) for the highest derivative (first order

in this case) and substituting n et, the governing equations for the

Runge-Kutta program become

dA- 1 '

.. (r.A A-KB+BA AB

d - 1 2 1 3 2 (A4As 2 42

1-
-•nw( VB1AA - Bi + B2A4 -t 2B-)A

1  -A A +- B B +A A+A B B1 21 212 1 3 2 42

€ ~- ii(A1A3B 1 -BI + A2  -+B2B)) !
1Ab2 1 17A 2 1  2 K 2 14 14IN 3 -2

1 A1B4 +AB 3 2)]

dB 2  1- 1 1
it - B2 + C KA2 - B4A, - A4 B1 + A3B2 - A2B3 )

0i
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- 1-n(A 1A.4 + BI B - A3A2 - B2B3 ).1

%''

i: , 2 - u% - %. -A

dB13 1-
+ (A1B -,( B2BA)B

S: E- ,.B 3  + 4KA3  - ( 2  + A1BI)

-.n;(A 22 B 2 A1
2 +B 2 )]

dA4
at c[- aA4  4KB .4-~(EB 2 B A A)

- .nw(AB 2 + A 2B 1 ))

dB4  -11
-t c[- PB+ 4KA4 + it( SA 1 + A 2B I

+ Tin(A 1A 2 -B 1B2)] (4.13)

It is often convenient to express the equations for Ai and 81 in

termý, of amplitudes, C,, and phase angles, 01, which are also functions

of the slow time variable n. Mathematically, wo can express the relation-

ships between the quantities as

A= C1 cos (14.14.a)

B1 . C1 sin (4.14.b)

_ _i
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dA± dCi dý1  (4*.I4*K ~~Cos *i -C sin *

41B dC1  (do44
X sin±+ C ~Cos (.1.d

where 1 1, 21, 3, and 4 for each of tiie equations above. Substituting

the expressions of (4.14) into the first two equations of (4.12)0 the

resulting equations become

dC d~1 1~J.Cos -C 1 , sin 0*1C o 41 +1 '*~ sin *

+1tcI3Csý cos 03 +* ClC3 sin ýjsi

+C 2C4 Cos 02 cos t~4 + C2C 4 sin ý2sin + r-nt~Cc 3

sin Co 3 C 1 C3 cos$01sn 03 +C 2 C 4 Cos 0 sin 02

24 CO sin 4 0

dC1  do1  1-1
-sin *~+ C1  -Cos 01 + sin 0 =2KC, cos 0

I 08-iE*-C1 3 co 03si

2 C

003 1 CS 0 1~C1  sin sin 03 + CA,~ cos 02 c0s 040 o 1cs 3+C
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+ C2C4 sin r 2 sin f 0 o (4.15)

Multiplying the first equation by cos and the second equation by sinO1 ,

adding the two expressions together, and using appropriate vultiple-angle

Identities from trigonomctry, the resulting equation for C1 becomes

dC1

+ 4(cC 4C c[cos(2*1  )3)

+ C2C4 cos(0 2 C [+ *+))M + ui C3

sin(2*l -3) + C2 C4 sin(O2 - + 0 C.,L6)

Similarly, multiplying the first equation of (4.14) by -sin i and the

second equation by cos 1i' adding the two expressions together, and using

appropriate multiple-angle identities for trigonometry, the resulting

equation for *l becomes

C2C
d1  21

IKcc3 sin(2* 1 - 3 + !_- sin(O -*+0 1)

1 r f2A 24 (4.71)2ý41)

-1 cos(O+2-0)] 0
2 CW3 COS(2y 1 'y 3 ) C1'- 1°(•+24• =0.(.7

Using these procedures disuussed above, equations for C2 , 02' C3 % *33 C4 *,

and 4 can be derived. Thus, these transformed equations are

* dC2  1-. 1

n + 2 +2 +• ,C•4 cos(Ol'W+02) - C2 C3cos(2ý 2 -0 3 ))

+ P[CC4sin(ol-*4+02) - C2C3 sin(2ý 2-$ 3 )] 0
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d#2  1 1C 1C4
Tn- y K - #-• s•n(#1 _#,4+ 2) .- ,un(2P2_-.3 )

2

J•-•1 ~.dC3 C3+-fw+ _d-_ c 2os(21-* 4 + 2 ) + C3 os(2#2 -#3 )'J 0

dC3  32 1 (2*1.*3))
3 + 1 1C 2cos(2$2-#3) - C32008

I [C 2 9O(242•3 C12

6-nw 2 sii 12(* 1#3J 0

1 2o -2 c s 2
d*3  112

Ut(• + 82 r si)] =

- -n- sin(2-
3 i3

- 2 c 2T6nwC[ cos(2#2-#3  c3  os(2o1 .)

dC4  1-
U- V~C4  =4(ClC 2 cos(O1 +*2 -f 4 ) jwC 1C2

sin(*1  o ~~ 4)] :0

-4K + ~ 4  5s.n~yi~i-j C

COS(O)3 0.(4.18)

Equations (4.16), (4.17), and (4.18) are the general combustion

equations in terms of amplitudes and phase angles. From thi~s point,

special cases can be investigated isolating certain conditions and closed-
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form solutions can be obtained for these cases. It is convenient to do

this in order to check the closed-form results of the special cases with

the results from the general equations (4.16), (4.17), and (4.18) when

the same conditions are imposed.

The first case to be evaluated is the case for standing waves

with no combustion effects. To simulate standing wave effect, set the

amplitudes C2 and C4 and phase angles 02 and f4 equal to zero. This

automatically satisfies four of the eight equations (4.18). To achieve

the no-combustion effect, set the interaction index, n, equal to zero.

Also, set the correction variable, K, equal to zero since the effect of

K will be investigated separately at a later time. Imposing these con-

ditions, the governing equations reduce to

dClC1 + ;C + 0 CIC cos(2ol- (4.19.a)
Tn+ 2~ C1  2. C1 3  oo(~~3)

~T~-~ EC 3 s in(201 - 03)] 4.9b

dC3  1 1
2+ • C3 - 8 C1

2cos(201- 3 ) 0 (4.19.c)

d03 1 C1 2
sin(2 1-h3) = 0. (4.lg.d)

The initial conditions imposed for this case are

Cl(o) l

0
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C3(0) 0 0

#3(O) a #30 (4.20)

To attempt a closed-form solutions let

Q Cl I (4.21.a)

C3  e'F 3  (4.21.b)

dC1  - .j (.1c
Se-•,(. o)F1 +e-•( )(..)

-- (- e' (- ;)r 3 + e ';i( -L-) . (4.21.0)

drd

Substituting these expressions into equations (4.19.a) and (4.19.) and

dividing through by e"'An, the resulting equations become

dF+1 - =3 )e'I13  a (4.22.a)

dF3  1 -•)'•••1
S_ 1 cos(241 - h)e 1  * (4.,22.b)

Multiplying equation (4.22.a) by 1/4 and equation (4.22.b) by Fr/F 1 aLnd

adding the two equations, terms containing the cos(2*i - *3 )e •n art

eliminated. In doing so, the result becomes
0

3o

~Air
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dF1  r3 d.F3

d" + 4 "1 " o (4.23)

Multiplying through equation (4.23) by F1 gives

1 d
WC'r EF12 + •AF3 ) 2 o 0 (4.24)

Intoegrating with respect to n then dividing by 1/2, the resulting equa-

tion becomes

1 3 4F3
2  D (4.25)

where D is a constant of integration. This constant depends upon the -A

initial conditiors imposed on the problem. From the initial conditions

given in (4.20) and using the transformation (4.2l.a) and (4.21.b), it can

be shown that FI(0) = 1 and F3 (0) = 0. Therefore, D1 equals to 1. Thus,

equation (4.25) becomes

3I2 1 4F32  
(4.26)

Taking equation (4.26) and substituting into equation (4.22.b), then

sep•rLating variables, the resulting equation becomes

dF3  1 - os (4.27)

[1-4F3 23]

Letting 291 - 03 2 Lrwhich satisfies equations (4.19.b, d), yields

cos(2f 1 - f3) = (-1) where-e = 0, 1,2,3. . . Substituting this expres-

sion and integrating the above equation, the resulting equation becomes
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1 t*h_ 2F (4.28)

where D2 is a constanrt of Integration. Using the initial condition F3(O)a

O, then, it can be shown that D2 a 2/;. Substituting and taking the

hyperbolic tangent of both aides of equation (4.28), the result becomes

F3 *½anhU[u-l)L(l-e'•")J • 9

3 2hanh 1 )I*10%' (4.29)
<..1

2--(

Substit"ting this expression into equation (4.26) and simplifying, the

resulting equation becomes

F sech[--t( 1 -e-- n)j . (4.30)

Substituting equations (4.29) and (4.30) into equations (4.2l.a) and

(4.21.b), and substituting n et and ; c, the resulting closed-form

solution for wave amplitudes C1 and C3 are

C1  Iest1secht5l-- .l-6e'Wt)1 (4.31.a)

2 {tanh 1-ý1) (4.3l.b)
3  22

To find expressions for 1l and 031 substitute the relation that 2ýI- 3=f

into equations (4.19.b) and (4.19.d) and integrate and evaluate the con-

stants of integration with the initial conditions; the results are

G 01 010
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tA3  #30 2 010-t C4.32)

where is a constant and 03 Is 4, radians out of phase with 2§. It

can be seen that a special set of initial conditions is necessary to be

consistent with this solution. A representative set is 20 030 0

which corresponds to • 0.

Inspection of equations (4.31) reveals that the magnitude of C1

continually decreases with time while the maguitude of C3 first increases

and then decreases. An interesting special case of equ&tions (4.31)

occurs in the absence of steady-otate combustion (a z 0). The results of

this case are

C 1 =sech[(l 3t

These results show that a disturbance in the form of the first mode is

transferred to the second mode as time increases. It is thought that this

indicates the beginning of the steepening that leads to the formation of a

shock wave. It can be seen that the presence of damping, in the form of

steady-state combustion, inhibits this process.

The second case to be investigated is that of standing waver with

gas-dynamic nonlinearities neglected. To simulate the standing wave (
effect, let the amplitudes C and C and the phase angles *2 and *4 equal

2 402 4

zero. Again, this automatically satisfies four of the eight equations of

(4.18). To achieve omission of gas-dynamic nonlinearities, let i = 0.

Also, let the correction variable, K, be equal to zero for simplicity.
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In doing so, the resulting equations, based upon equation L4.19),

become

dC3 + ; nZC C sin(2 
1- 

#)- 0
• -1 n!+ T( ý1 03)] -

dC+ 3+ cC3  1 n![-C 2 sin(2 0

1ý 24i 1)-d43 C•2 os

13 + Cd cos(26 2 0 43)] 0 * (4.34)
3

The initial conditions imposed for this case are

C (0) 1
1

Si •C3(o) 0 lz

"43(0) f30 (4.35)

Let 241 - *3 = (24 + i)w/2, t 0-,, 2 . . . . This implies that sin(241

- 43) = (-1) and cos(201 - 43) = 0. Substituting into (4.34) and solving

in the manner indicated previously one obtains expressions for the ampli-

tudes for C1 and C 3 which are

C = w-(t{ [sec[ nc(-1)t(1-evi)]t} (4.36.a)

04
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a 4 (4.36.b)

*10 
(4.36.c)

2010 
( ..

36.d)

where
0 I0s constant and *3 is (2t+l)v/2 radians out of phase with 2#V

As in the previous solution, special initial conditions are required to
produce this solution. A representative set is 10 M 0, # 30 = -j/2D which
corresponds to t = 0.

The secant and tangent both become infinite when their arguments
take on the value tv/2. In (4.36.a, b), the arguments of these functions
start at zero at t = 0 and have a maximum absolute value at ne/2 3/2Thus, if nc/2 31 2 - v/2, the tangent and secant never become infinite and
C1 and C3 eventually decay to zero due to the influence of the exponential
function. This is a stable situation. If, on the other hand, ne/23/2 >
w/2, the tangent and secant become infinite at t = (2/;)jtn[l_2hv/(nc)jj

causing C1 and C3 to become infinite. This is an unstable situation.Thus, the boundary between stable and unstable behavior is indicated by
the equation

?ne/23/2 "'/2. 
(4.37)

The stability equation in the n-c plane has the form

n A 2%r/c 4 . 44 2/c. 
(4.38)[ This has the form of a rectangular hyperbola and is independent of w.I
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For the case of traveling waves, it is more convenient to work

with the general perturbation equations expressed in modal amplitudes

in terms of the real time variables, equation (4.13). To simulate the

effect of spinning or traveling waves, let the following modal ampli-

tudes be equal. These relations are

B2  A1

B =A 3£4 3

B1  -A2

B = -A4 * (4.39)
3 4

It can be shown that substituting the relations (4.39) into equation

(4.10), expressing the results in terms of the real time variables, sub-

stituting these expressions into equation (3.18), and using appropriate

multiple-angle formulas leads to

A(Gt) 1Acos(t-G) - A2 sin(t-G) + A3 cos 2(t-0)

-A sin 2(t-e)+ .+ .. (4.40)
4

which has the form of a sum of traveling waves. Substituting the expres-

sions in (4.39) into equations (4.13), these eight equations reduce to

four pairs of identical equations. The four independent equations listed

below are

SdA 1  1-CIE- 1A ;AI4KA21-(AIA
3 +A2AA)-n;(AIA .A2 A3 )J

1+U•" 1 3 2 4 4-A



21-
r t - A 2 - " A-L(A1 A4 -A2A3 )iii(A 2A4*A1 A3 )]

dA

VC- 0A +4KA + ti(A 1
2 -A 2 )+ifw(A 1 A)3

dA4 11-
;A- ~.~ 4KA + - i(A A2) Vý(A 2 -A 2)3 (4.41),

Ttd-" 2 4-- 3 ¥

By making the substitut.ion, we have reduced to a system of four equations I
and four unknowns. By solving for the modal amplitudes Air the modal

"amplitudes B are readily comput.4d by using the relations of (4.39) to

determine the entire nature of the wave form.

For the case of traveling waves omitting gas-dynamic nonlinearities,

let the amplitudes A1 and A3 equal zero. Then set i, the gas-dynamic

index, equal to zero. Again, for simplicity, let the correction variable,

K, controlling physical charaber configurations, be zero. In doing so, in

terms of the transformation variable, n, the resulting equations become

dA 2  1dT + a A 2 "ný[A 2A. 43 0

d+ 2 + 0 (4.42)

which is a system of two equations and two unknown modal amplitudes. To

find an exact closed-form solution to these equations, let

A 2 han,
A2 -e'n1

A4  4n.,F2......
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22 e + -40
2dn 2 1d

dA dr

4  1 e ) + 2
--- 2 , (4.43)

Using these transformations, the procedure for solution is exactly the

same as for the standing wave case for both no combustion and no gas

dynamics. The initial conditions for this case are

A2 (0) 1
a2

A (0) 0 , (4.*,44)

Substituting the expressions of (4.42) into (4.41), the resulting equa-

1*l tions are

d-1 -q nýF F _ 0 I
dr2 1 •2

dT- - n nFe2 =0 (4.45)

with initial conditions

F1 (o) =1

F2(0)=

Solving these equations in the manner outlined in the standing wave solu-

tions, the results arei,



60

Sao /2- n2

r2 = . (_6 (4.46)2 r2 2

Expressing the results of (4.45) in terms of modal amplitudes by substi-

tuting into (4.42), the resulting equations become

A 2  e 2 l-
ig

A• e-- tan[ IT4(-•r) (4.47;)

The results for traveling waves (4.47) are quite similar to the results

for standing waves (4.36) for the case of no gas-dynamic nonlinearities.

- The same behavior can be expected as was di.cussed In the standing wave

case about the nature of oscillation of the modal amplitudes. The only

* significant difference is the value to determine the boundary of stability

for the interaction index governing the combustion terms. The stability

condition for traveling waves is

2 2 (4.48)

Thus, the equation of the stability boundary in the n-c plane is

S 2.22
n • -• '"(4.49)

Comparing equation (4.49) to (4.38) shows that the stability boundary for

the interaction index is half as great for the traveling wave case as for

- ~ ~ . - ~ ---..-.--
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sentation of results of various numerical cases.

For the case of traveling waves with no combtstion, let the ampli-

tudes A2 and A4 equal to zero. Then set n, the interaction index, equal

to zero, and, again, let the correction variable K equal to zero. Sub-

stituting into equations (4.40) and transforming into variable n, the

results are

1 +
dA1

I + A 2- 0 (4.50)

2 3 4 1

with initial conditions

A (O) 1

A3 (0) = 0

which again is a system of two equations and two unknown modal amplitudes.

To find an exact closed-form solution to these equations, use similar

transformations as shcur ii, Z1,.42). In doing so, and simplifying, the

results are

u ~~dF 1  ~
+ e F F 0

dn 12

dF
2 1 -k~n 2 0(4.51)

Fn 41
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with initial conditions

Fl(o) a 1

F 2(O) a 0

Solving these eq.%ations in the same manner as before, the results are'

F1  sech[1/;(l-e';)3

r2 "I tanh[l!;(l-e'•ýn)] (4.52)
F2  2~52

Again, expressing the results of (4.51) in terms of the modal amplitudes

of the form of equation (4.43). the resulting equations become

A -2

The results for' the traveling waves (4.52) are similar to the results

for standing waves (4.31) for the case of no combustion. A disturbance

initially having the form of the first mode eventually is transformed into

one having the form of the second mode. To compare these results for

standing waves and traveling waves to the general perturbation equations,

two computer programs were written (Appendices D and E) which numerically

evaluate the modal amplitudes of various conditions for standing and

traveling waves.

A



63

One last special case is an investigation of the effect of the

correction variable K. In the special cases previously discussed, the

correction variable K was set equal to zero. But, in this discussion,

A, the correction variable K will be of primary importance in the equations.

To start this analysis, refer to equations (3.21). Based upon these

equations, impose the following conditions. First, neglect combustion

effects (i.e., n = 0). Then, let us consider only the case of standing

waves (i.e., gl g2  0). Finally, let us neglect the steady state

burning rate (i.e., 0 0) and assume that the terms multiplied by cK

are larger than those multiplied by e above. This can be accomplished

by writing

K= cK (4.54)

and treating K1 as a quantity of 0(1). Imposing the above conditions

and substituting equation (4.54) into the equations (3.21), the result-

ing equations become

[1+K d2f1  df1  df-2 (4.55.a)
lKl - + fl + 2etf2 .•. + fl d.-) = o(.5a

1 dt2 12T_ f

id2f 2 df 1

[1+4K] )- + 4f2 "f - = 0 ( 4.55.b)
1 2 f f1 Tt

with initial conditions

f1(0) = 1

- - .. L±k..
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jr..{o) 0Q

f 2 (0) "0

~2

"Tt=(0) =0,

First, assume a straightforward perturbation solution similar to the

equations (4.6) except the functions are dependent upon the real time t.

Substituting these assumed solutions into the equations and initial con-

ditions of (4.55) and keeping terms of 0(l) and O(e), the separated

equations become

d2f
-- + = 0 (4.56.a)

dt 2  1 10

d2f 2 0

d T12  T T 20 (4.56.b)

d2fl1 1 2 dflo df 20

d2f+1  1, 1 r= f lO d(.
dt 2  1+K 1

21 4 1 1

with initial conditions

f 1 0 (0) f f 11 (0) = 0

i -
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_d__ dfO0
dtt

f20(0) u0 f 2 1 (0) 0

df 2 0 (O) 0df. 21 (O)

dt adt

The first-order equations (4.56.a and b) can be solved by assuming the

usual assumed molution for linear differential equations. Doing this

axid applying the appropriate initial conditions, the results for the

first-order terms are

flO = Cos I•+KI t

f2 0 (4.57)

Substituting (4.57) into the right-hand side of (4.56.c) the equation

becomes a homogeneous linear differential equation. Solving in the

usual manner and applying the appropriate initial conditions

f - 0 (4.58)

Substituting (4.57) into the right-hand side of equation (4.56.d), the

J iresulting equation becomes a linear differential equation with a particu-

lar solution. By assuming an appropriate homogeneous and particular

solution and evaluating the constants using the appropriate initial condi-

tions, the result becomes
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f (+K 2 ,. + .= .i 2 t 4.921

Therefore, substituting equations (4.57), (4.58), and (4.59) into the

assumed perturbation solution and lettihg K1  t sK, the resulting equations

become

fCos__ ('4.60.a)

f2 Re 2Iu4, Ksin - sin--.-] (-.60.b)
2 24K /I+& ~ t+ck.l

Recall that in the two-variable perturbation method, f1 and f 2 expressed

in terms of the perturbation variables were

fl A .(n) cos C + Bl(n) sin C (4.61.a)

f 2 = A3 (n) cos 2C + B3 (n) sin 2C (4.61.b)

By transforming equation (4.60.a) into perturbation variables and expand-

ing the argument of the cosine function by the Taylor series and using

appropriate sum and difference trigonometric identities f can be

expressed as

flu Cos 1 Kn cos C + sin 1 Kn sin C (4.62)

Therefore, comparing this to equation (4.61.a), the functions A1 and BI

must be

-7 - 7'. _ _J°
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1
A' 1l(n) =Cos 2" Kn

B (n) sin-Kn (4.63)

By similar procedure, it can be shown that evaluating equation (4.60.b)

and comparing it to equation (4.61.b)), the results are

1
A3(nW) :24-sin 4KM - sin Kn]

1
B3( KC) = 2--, cos Kn - cos 4Kn] * (4.64)

To show the validity of equations (4.63) and (4.64), the problem is now

solved using equations (4.12) which are derived from equations (3.21) by

the use of the two-variable perturbation method. To reproduce the condi-

tions imposed on the problem just discussed, let there be no combustion

(i.e., n : 0), let there be no steady-state burning rate (i.e., o 0),
and let there be only standing waves existing (i.e., A2 : A4 : B2  B :

0). Imposing these conditions on equations (4.12), the resulting equa-

tions become

dAl 1
d- 1. KBI + ,A=A 3 + B3 0

dB 2 1 1 - 1 0

- 2(AIB3
C 

dB

dA3  8•BI2
+ 4KB3 + - A1 2] 0

d 3 8 1
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dB 3 14"A3 .1  AIB1 0 (4.65)

In the previous solution it was assumed that the frequency correction

terms were larger than the gas-dynamic .nonlinearities. To be consistent

with this assumption the following procedure is used. By a change of

variable n =/K, equation (4.65) can be rewritten as

€l 1S-+ • S. + •[A 1 A + B1 B3  = 0

dl 1 1
S- A1 ÷~ E A1B3 - B1A3J = 0

dA3 2 ,, 3 + 2 [B1 A - A1 l] = 0

dB1
- 4A3 -l A1B1 = 0 . (B.66)

•" Assuming a straightforward expansion of the form

1A1  A 0 + A l +A33.

3 8KA 0  K A3

dB 3 1

A= A + 1  + 1 A +

B3  B3  + B + (4.67)

3
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then substituting these expressions into the equations (4.66) and keeping

terms of 0(l) and 0(1/K), the resulting separated equations become

dA 0

dBo10 1  A 0 
(4&.68.b)

dA3
30 + 4B 0 (4.68.c)

•:dB 30d - 4A3 0 =0 (4.68.d)

=C + 2BjLl 2 - 'A 1 0A30  + B 0B (4.68.e)

S11 1 l
-d- Al1 = - A10B30 - B10A303 (4.68.f)

dA 31 t+ 4B3 1 B - 2B - AI02] (.8g

dC3-• 4A 31 = tEA1o8,0] (4.68.h)_ i
with the initial conditions

A1 0 (0) 1 B 1(0) 0

A11 (o) = 0 B11(0) = 0

-li
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A3 0 (0) 0 B30C(0) 0

A3 1 (0) 0 0 B3 1 (0) = 0

Since the first-order equations are coupled, differentiate equations

(4.68.a and c) once with respect to C then substitute equations (4.68.b

and d) into these equations resulting in
iI

V 10 + 1' AO= 0

d2 30 + 16A 30 = 0 (4+.69)
dc2

As can be seen, equations (4.69) are linear differential equations

which can be evaluated by the usual manner. In doing so and applying

the appropriate initial conditions, the resulting first-order modal ampli-

tudes are

1 1AIO0 cos -2-c= cos-Kn

A3 0  0. (4.70)

Knowing values for A10 and A3 0 , substitute these values into equations

(4.68.b and d) and apply appropriate initial conditions. The results

become

8 asin 4C sin4n

B30 a 0 . (4.71)

Se
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Substituting the results of (4.70) and (4.71) into the right-hand side of

equations (4.68.e-h), the resulting equations become

d2 11
C'l .1 B(4.72.a)

~12 11
dBl 1

--•- -Al (4.72.b)

d31 1

+ 4B1 = cos C (4.72.c)

31 81

311d- "4A 1 sin C (4.72.d)

Since equations (4.72.c and d) are coupled, differentiate both equations

once with respect to C and substituting equations (4.72.c and d) into •he

appropriate terms of the new set of equations, the resulting equatiors are

d2A31  5 sin C

d42  31 8s_

dl2B

d•B 3 1

--- 16B = -cos C (4.73)
dC231 8

Equations (4.73) are a set of linear differential equations with homo-

geneous and particular solutions. Solving these equations in the usual

amplitudes are

II
A 31 (sin4ý - sinc) = -(sin4Kn - sinKn)

31 24 2
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B31 = cos€ - cos40) -{cosKi - cos4Kn). (4.74)

In a similar manner, the results for the modal amplitudes A and B1 can

be determined to be

All = 0

B =0 (4.75.

evaluated with the app:,opriate initial conditions. Therefore, substitut-

ing the results of (4.70), (4.71), (4,73), and (4.74) into the assumed

perturbation solution of (4.67), the resulting modal amplitudes become

A1 co I 1n +.1

B1 = ysi Kn + ..

A 1  s in - sin Kn) +3

B -•sin 4gn - sin Kn) + .... (4.76)3 24R(

It can be seen that equations (4.76) are identical to equations (4.63) and

(4.64). This indicates that the two-variable method produces the correct

sclution. Equations (4.60) indicate that the presence of K changes the

frequency of each of ths first two acoustic modes and further renders the

ratio of the second frequency to the first a non-integer number in general.

= 0
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Equations (4.76) show how this effect manifests itself in the two-variable

perturbat ion solution.

These results can be used in another way. If the nonlinear terms

are neglected in (4.55.a), the results are

d2f1
(÷+K.) - + f 0

dt 2

d 2f 2 + 4f el f 0

df (0) df 2 (0)
fl(0) 1, at 0, f 2 () = 0, dt = 0. (4.77)

It ca. y s tha. eq'..ations (4.60) constitute the exact solution

of equation (4.77). If the ctrrespond2:q,, te'ms are neglected in equations

(4.65), the results are

dA1  1

dr) 2 1
dBq 1 K A 0

S~dA;
+dA B+ 2 -A 2) =0

3. aKB j 1  1

dB1
-4KA 3  4A 1B 1 0 (4.78)

where

iiJ
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i A1 (.O) =1

A 3(0) =2 0

A3(0) 0

It can be shown that equations (4.76) are the exact solution of equation

(4q78). These facts were used to check the accuracy of the computer pro-

grams to be discussed later.

In the remainder of this thesis, a comparison of the magnitudes

of the modal amplitudes will be represented in graphical and tabular

form. Under a given set of conditions, the acoustic modal amplitude pro-

gram, the general perturbation program, and the analytical cases that

were programmed will be used and results compared. Varying certain con-

ditiins will show their effect on the changes in magnitude of the modal

amplitudes through a set range of time which is related to maintaining

stability. From these various cases, it will be determined whio)' param-

eters and conditions have the greatest effect in changing a.•.. ampli-

tudes and which in turn affect the stability criter'ia for combustion

by the methods discussed above.

"I



Chapter 5

DISCUSSION AND PRESENTATION OF RESULTS

In this chapter, results are presented both in graphical and

tabular form which are representative of the results generated by the

programs listed in the Appendices B through E. From these representative

sets of results, basic observations will be made to observe which

parameters or conditions have the greatest effects on the problems of

stability.

In Figures 3 and 4, modal amplitudes F1 and F2 are graphically

represented versus time for a stable standing wave case. For these

figures, F (O) = 0, F '(0) = 1, F2 (0) = 0, F'2 (0) = 0, G1 (G) 0, G '(0)

0, G2 (0) = 0, G2 '(0) = 0, n 35, 1 = 1, K = 0, c = 0.1 and w = 0.1.

The step size used was 0.1. Experimentation showed that this was a small I
enough step size to produce accurate results and was used throughout.

From these figures, one notices that both the first and second order modal

amplitudes decrease in amplitude with increasing time. Also, F2 , the

second order modal amplitude, tends to oscillate at twice the frequency of

F1. These figures are based upon one set of parametric values; however,

these figures represent qualitatively the results obtained using a wide

variety of initial conditions and parametric values. In Figares 5 through

8, modal amplitudes F1 , F2 , G1 , and G are graphically represented versus

time for a stable traveling wave case. For these figures, F,(0) = 0,

FI 1 (O) -i, F2 (0) = 0, G1 (0) = 1, G1 '(0) 0, G2 (0) = 0, G21(0) = 0,

ln 15, 1 1, K = 0, w 0.1 and C = 0.1. The general shape of the

75
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curves and the relative frequencies of oscillation are qualitatively

similar to the stable standing wave case.

In Figures 9 and 10, modal amplitudes F1 and F2 are graphically

represented versus time for an unstable standing wave case with the

same conditions as the stable case except that n = 50. As can be seen,

the maximum amplitude of F1 starts to decrease then increase dramatically

for increasing time. The maximum amplitude of F2 increases continuously.

In Figures 11 through 14, modal amplitudes F1, F2 , G1 , and G2 are

represented versus time for an unstable traveling wave case. Again, the

conditions are the same as for the stable traveling wave case except that

n = 30. Drastic increases in amplitudes are observed for all the modal

amplitudes shown as time increases. The behavior is similar to the

unstable standing wave case. The period of time for traveling waves to

become unstable is about one-half the period of time for standing aaves

to become unstable. Thus, it seems that traveling waves are less

stable than are standing waves.

In Tables 1 and 2, a comparison of results is presented for modal

amplitudes F1 and F2 for a stable standing wave case. For these cases,

Fl(0) = 0, F1 '(0) = 1, F2 (0) = 0, F2 '(0) = 0, GI(0) = 0, Gjf(0) = 0,

Gq(0) = 0, G2 '(0) = 0, n = 60, C = 0.1, and 0.1. These tables

quantitatively show the effect of neglecting gas dynamic non-linearities

on the accuracy of the computations. Also, a comparison can be made

between the exact solution method (Appendix B program) and the perturbation

solution method (Appendix C program). From Table 1, one can observe that

the effect of neglecting gas-dynamic nonlinearities is small where

quantitatively comparing values of the modal amplitude rI. Even though,

quantitatively, the values for the exact solutions and perturbation
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Table 1. Comparison of Results for F, Showing Effects of Gas Dynamic
Index (1) - (F, .0, F' . 1, F2 O, F2 ' 0$ O 1  0 O, G1' 0* G2  0,
G2 0) - Stable Cases (n a 60) Standing Waves

K-1 K- I

Exact Perturbation Exact Perturbationi. Solution Solution Solution Solution

0.2 0.19699 0.18712 0.19699 0.18702
0.4 0.38335 0.36426 0.38336 0.36386
0.6 0.55252 0.52540 0.55259 0.52462
0.8 0.69856 0.66518 0.69885 0.66400
1.0 0.81627 0.77905 0.81719 0.77758S1.2 0.90132 0.86340 0.90354 0.86185

2.4 0.95043 0.91552 0.95789 0.91603
1.6 0.96159 0.93461 0.96936 0.93399
2.0 0.86985 0.87244 0.88656 0.87466

S2.2 0.77125 0.79443 0.79242 0.79884
:•i2.4 0. 64330 0.68895 0.66783 0.69602
:•2.6 0.49211 0.56003 0.51822 0.57016

2.8 0.32469 0.41247 0.35021 0.42593
3.0 0.14827 0.25167 0.17115 0.26856
3.2 -0.03017 0.08340 -0.01142 0.10366
3.4 -0.20430 -0.08633 -0.19032 -0.06300
3.6 -0.36859 -0.25158 -0.35912 -0.22566
3.8 -0.51829 -0.40659 -0.51242 -0.37879
4.0 -0.64917 -0.54604 -0.64583 -0.51727
4.2 -0.75738 -0.66519 -0.75583 -0.63655
4.4 -0.83921 -0.76006 -0.83953 -0.73278
4.6 -0.89118 -0.82756 -0.89450 -0.80297
4.8 -0.91029 -0.86556 -0.91868 -0.84504
5.0 -0.89444 -0.87297 -0.91049 -0.85789
5.2 -0.84300 -0.84979 -0.86909 -0.841435.4 -0.75726 -0.79704 -0.79483 -0.79656
5.6 -0.64071 -0.71679 -0.68959 -0.72514
5.8 -0.49885 -0.61200 -0.55708 -0.62988
6.0 -0.33868 -0.48646 -0.40279 -0.51427
6.2 -0.16794 -0.34466 -0.23365 -0.38244
6.4 0.00574 -0.19159 -0.05742 -0.23901
6.6 0.17554 -0.03259 0.11809 -0.08892
6.8 0.33582 0.12685 0.28578 0.062717.0 0.48221 0.28126 0.43974 0.21080
7.2 0.61134 0.42538 0.57552 0.35042
7.4 0.72042 0.55435 0.68999 0.47703
7.6 0.80682 0.66387 0.78099 0.58653
7.8 0.86778 0.75032 0.84693 0.67550
8.0 0.90042 0.81090 0.88644 0.74121

'2
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Table 2. Comparison of Results for F2 Showing Effects of Gas Dynamic

Index () - (F 1  o, F' 1, F2  o 0rF 2 = 0, G, 0, G1 ' = 0, G2 M 0,

G2 0) - Stable Cases (n = 60) - Standing Waves

K~ 1 K 1

t Exact Perturbation Exact Perturbation
Solution Solution Solution Solution

0.2 0.00012 -0.00485 0.00003 -0.00253
0.4 0.00113 -0.01309 0.00043 -0.00938
0.6 0.00422 -0.02223 0.00205 -0.01865
0.8 0.01060 -0.02944 0.00602 -0.02784
1.0 0.02110 -0.03215 0.01336 -0.03424
1.2 0.03582 -0.02854 0.02471 -0.03553
1.4 0.05397 -0.01795 0.03497 -0.03023
1.6 0.07375 -0.00104 0.05816 -0.01798
1.8 0.09260 0.02022 0.07742 0.00026
2.0 0.10749 0.04283 0.09521 0.02232
2.2 0.11543 0.06317 0.10863 0.04514
2.4 0.11407 0.07764 0.11493 0.06516
2.6 0.10215 0.08319 0.11198 0.07891
2.8 0.07988 0.07788 0.09878 0.08357
3.0 0.04909 0.06128 0.07573 0.07745
3.2 0.01309 0.03461 0.04478 0.06031
3.4 -0.02375 0,00071 0.00929 0.03352
3.6 -0.05653 -0.03632 -0.02639 -0.00006
3.8 -0.08051 -0,07164 -0.05749 -0.03640
4.0 -0.09180 -0.10031 -0.07945 -0.07083
4.2 -0.08798 -0.11801 -0.08865 -0.09863
4.4 -0.06850 -0.12165 -0.08296 -0.11571
4.6 -0.03490 -0.10993 -0.06211 -0.11921
4.8 0.00924 -0.08353 -0.02786 -0.10793
5.0 0.05868 -0.04515 0.01610 -0.08257
5.2 0.10711 0.00077 0.06458 -0.04571
5.4 0.14796 0.04864 0.11144 -0.00152
5.6 0.17534 0.09236 0.15041 0.04468
5.8 0.18493 0.12615 0.17593 0.08715
6.0 0.17466 0.14534 0.18393 0.12042
6.2 0.14513 0.14699 0.17255 0.14004
6.4 0.09957 0.13035 0.14243 0.14314
6.6 0.04352 0.09700 0.09680 0.12888
6.8 -0.01592 0.05073 0.0411 0.09857
7.0 -0.07104 -0.00295 -0.01771 0.05557
7.2 -0.11448 -0.05745 -0.07205 0.00488
7.4 -0.14027 -0.10594 -0.11471 -0.04743
7.6 -0.14458 -0.14223 -0.13988 -0.09498
7.8 -0.12628 -0.16158 -0.14384 -0.13189
8.0 -0.08716 -0.16128 -0.12556 -0.15352
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solutions are not exactly the same, the order of magnitude and behavior

of results Is similar, From Table 2, the same observations can be made

for the behavior of F2 . There is, however, more error, quantitatively,

between tho results for exact and perturbation methods and a region of

qualitative inaccuracy between the exact and perturbation solutions exists

near t a 0. This takes the form of a difference in sign of F2 between

results from the exact solution as compared to the perturbations solution.

This discrepency occurred also in the other calculations performed (not

shown) and will be discussed in more detail later in this chapter.

In Tables 3 and 4, a comparison of results is presented for modal

amplitudes Fi and F2 for a stable standing wave case. The initial

conditions for the results in these tables are F(O) = o, Fr'()= 1,

r(o) 0 o, r2 (0) 0 0, 1(o) = 0, G 1 '(0) a 0, G2(0) = 0, G2
' (0) 0,

n = 40, c = 0.1, and w = 0.1. However, these tables quantitatively

present the effect of deviations of the ratio of the second acoustic

frequency to the first from the integer value of 2 (this is controlled

by the parameter K). These results show that solutions for finite values

of K are qualitatively similar to those for K = 0. This indicates that

the ratio of the second acoustic frequency to the first does not have

to be an integer in order to produce the type of behavior observed here.

A ratio near an integer value will lead to similar results. Tables 3

and 4 also allow a comparison to the results generated by the program

in tppendix D for the approximate analytical solution (4.31). These

results presented in the last column of Tables 3 and 4 can be compared

to the fourth column in each of these tables to determine the accuracy

of (4.31). These comparisons present further evidence that the neglect

of gas dynamic nonlinearities does not have an important qualitative

effect.
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Table 3. Comparison of Results for FI Showing Effects of the Correction

Variable (K) - (F o, Fr' ; 1, F2  0, ? , GI 0 0, G 0,

G2 0, G2' = 0) - Stable Case (n x 40) - Standing Waves

K=I K=0 K=0

t Exact Perturbation Exact Perturbation Analytic
Solution Solution Solution Solution Solution

0.2 0.19699 0.18707 0.19670 0,19678 0.19671
0.4 0.38335 0.36396 0.38172 0.38210 0.38186
0.6 0.55254 0.52460 0.54795 0.54890 0.54843
0.8 0.69867 0.66358 0.68903 0.69093 0.69029
1.0 0.81667 0.77635 0.79957 0.60302 0.80234
1.2 0.90247 0.85935 0.87537 0.88124 0.88075
1.4 0.95312 0.91014 0.91361 0.92306 0.92304
1.6 0.96699 0.92744 0.91310 0.92740 0.92820
1.8 0.94390 0.91120 0.87443 0.89468 0.89666
2.0 0.88523 0.86255 0.80001 0.82676 0.83027
2.2 0.79388 0.78374 0.69393 0.72690 0.73221
2.4 0.67411 0.67805 0.56163 0.59954 0.60682
2.6 0.53129 0.54969 0.40948 0.45016 0.45947
2.8 0.37154 0.40358 0.24432 0.28905 0.29627
3.0 0.20133 0.24520 0.07300 0.11102 0.12386
3.2 0.02712 0.08039 -0.09782 -0.06484 -0.05085
3.4 -0.14491 -0.08439 -0.26190 -0.23547 -0.22097
3.6 -0.30901 -0.24474 -0.41335 -0.39410 -0.37989
3.8 -0.45992 -0.39354 -0.54662 -0.53453 -0.52152
"4.0 -0.59287 -0.52617 -0.65660 -0.65139 -0.64055
4.2 -0.70357 -0.63813 -0.73872 -0.74028 -0.73261
4.4 -0.78821 -0.72574 -0.78928 -0.79800 -0.79446
4.6 -0.84362 -0.78623 -0.80583 -0.82264 -0.82407
4.9 -0.86746 -0.81785 -0.78760 -0.81364 -0.82069
5.0 -0.85849 -0.81988 -0.73571 -0.77179 -0.78490
5.2 -0.81682 -0.79266 -0.65317 -0.69920 -0.71852
5.4 -0.74409 -0.73757 -0.54464 -0.59917 -0.62456
5.6 -0.64352 -0.65697 -0.41585 -0.47611 -0.50704 r
5.8 -0.51967 -0.55405 -0.27311 -0.33525 -0.37090
6.0 -0.37816 -0.43279 -0.12272 -0.18253 -0.22172
6.2 -0.22516 -0.29772 0.02937 -0.02427 -0.06554
6.4 -0.06694 -0.15382 0.17767 0.13305 0.09140
6.6 0.09056 -0.0063 0.31714 0.28307 0.24291
6.8 0.24192 0.13957 0.44298 0.41977 0.38308
7.0 0.38242 0.27867 0.55061 0.53776 0.50650
7.2 0.50795 0.40617 0.63563 0.63247 0.60850
7.4 0.61493 0.51774 0.69408 0.70029 0.68527
7.6 0.70017 0.60967 0.72?86 0.73878 0.73407
7.8 0.76090 0.67898 0.72020 0.74667 0.75327
8.0 0.79476 0.72355 0.68609 0.72400 0.74234

fi
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Table 4. Comparison of Results for F2 Showing Effects of the Correction
Variable (K) - (F 1 a O, F1 ' * 1, F2 U 0, F2  0, G1 = 0, G1  0

""2 0, G2 0) - Stable Case (n = 40) - Standing Waves

K=I K= 0K=O1 Exact Perturbation Zxact Perturbation Analytic
Solution Solution Solution Solution Solution

0.2 0.00011 -0.00400 0.00015 -0.00419 -0.00192
0.4 0.00099 -0.00996 0.00136 -0.01035 -0.00696
0.6 0.00354 -0.01599 0.00479 -0.01597 -0.01337
0.8 0.00860 -0.02013 0.01141 -0.01856 -0.01885
1.0 0.01665 -0.02071 0.02149 -0.01626 -0.02113
1.2 0.02761 -0.01669 0.03443 -0.00838 -0.01856
1.4 0.04072 -0.00793 0.04866 0.00438 -0.01059
1.6 0.05458 0.00479 0.06180 0.01995 0.00208
1.8 0.06726 0.01983 0.07113 0.03529 0.01749
2.0 0.07663 0.03491 0.07416 0.04696 0.03278
2.2 0.08072 0.04750 0.06910 0.05185 0.04472
2.4 0.07803 0.05521 0.05549 0,04793 0.05038
2.6 0.06793 0.05622 0.03439 0.03468 0.04776
2.8 0.050R1 0.04957 0.00841 0.01343 0.03626
3.0 0.02816 0.03542 -0.01867 -0.01282 0.01697
3.2 0.00244 0.01507 -0.04246 -0.03978 -0.00745
3.4 -0.02323 -0.00917 -0.05871 -0.06265 -0.03313
3.6 -0.04544 -0.03425 -0.06410 -0.07695 -0.05561
3.8 -0.06099 -0.05679 -0.05687 -0.07938 -0.07067
4.0 -0.06735 -0.07356 -0.03727 -0.06854 -0.07507
4.2 -0.06307 -0.08196 -0.00764 -0.04530 -0.06722
4.4 -0.04802 -0.08040 0.02778 -0.01278 -0.04759
4.6 -0.02355 -0.06854 0.06351 0.02408 -0.01872
4.8 0.00767 -0.04745 0.09363 0.05926 0.01509
5.0 0.04187 -0.01945 0.11279 0.08668 0.04845
5.2 0.07470 0.01210 0.11719 0.10127 0.07573
5.4 0.10173 0.04330 0.10529 0.09987 0.09206
5.6 0.11915 0.07013 0.07824 0.08191 0.09414
5.8 0.12425 0.08905 0.03976 0.04959 0.08095
6.0 0.11586 0.0974!5 -0.00434 0.00764 0.05395
6.2 0.09462 0.09402 -0.04711 -0.03736 0.01700
6.4 0.06286 0.07894 -0.08154 -0.07807 -0.02424
6.6 0.02438 0.05389 -0.10178 -0.10757 -0.06318
6.8 -0.01630 0.02182 -0.10409 -0.12058 -0.09336
7.0 -0.05322 -0.01335 -0.08754 -0.11433 -0.10952
7.2 -0.08237 -0.04728 -0.05423 -0.08921 -0.10854
7.4 -0.09956 -0.07576 -0.00908 -0.04879 -0.09001
7.6 -0.10237 -0.09523 0.04092 0.00093 -0.05639
7.8 -0.09018 -0.10322 0.08777 0.05190 -0.01267
8.0 -0.06428 -0.09872 0.12375 0.09586 0.03434

=7,7 73
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In Tables 5 and 6, a comparison of results are presented for modal

amplitudes F1 and F2 for art unstable standing wave showing the effect of .1

neglecting gas-dynamic nonlinearities. It can be seen that the gas

dynamic nonlinearities have little qualitative effect on the results.

In Tables 7 and 8, a comparison of results are presented for modal

amplitudes F, and F2 for an unstable standing wave case showing the effects

of K. The results for zero and non-zero are qualitatively similar.

These tables are representative of the cases that were investigated

in the course of this research. Only cases involving standing waves were

presented. The same behavicr, however, can be observed for the cases

involving traveling waves.

In Table 9, a comparison of stability boundaries is presented

based upon the interaction index (n) which is a measure of the strength

of the combustion process. For standing waves and the given conditions •

shown, the stability limit for a process with gas dynamic nonlinearities

considered and K = 0 is between 45-50. When both gas dynamic non-

linearities and the correction variable are considered, the stability

limit is increased to 67.5-69. Finally, when considering only the

correction variable with no gas-dynamic non-linearity effect, the stability

limit is 72-72.5. The results show that the neglect of gas dynamic

nonlinearities slightly underestimates the stability boundary and that

the increasing K increases the stability limit.

In Table 10, a comparison of stability boundaries is presented

based upon the interaction index for traveling waves. These results provide

additional confirmation of the conclusions discussed in the previous

paragraph and also illustrate the fact that standing waves are roughly

twice as stable as traveling waves. This is consistent with the
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Table 5. Comparison of Results for F1 Showing Effect of the Gas Dynamic

Index (M) - (F 1 = 0, F1' = 1, F2 * 0, F2' • 0, G1 , 0. G1 ' 0, G2  0,

G2  0) - Unstable Case (n 75) - Standing Waves

1=1 i=O
:K= 1 K=I1

K

t Exact Perturbation Exact Perturbation
Solution Solution Solution Solution

0.2 0.19699 0.18717 0.19699 0.18703
0.4 0.38335 0.38215 0.38336 0.36402
0.6 0.55250 0.52613 0.55258 0.52513
0.8 0.69847 0.69244 0.69881 0.66518
1.0 0.81592 0.80625 0.81700 0.77974
1.2 0.90030 0.86736 0.90294 0.86535
1.4 0.94803 0.92126 0.95337 0.91952
1.6 0.95671 0.94184 0.96695 0.94089
1.8 0.92557 0.92873 0.94003 0.92921
2.0 0.85572 0.88276 0.87584 0.88529
2.2 0.75039 0.80579 0.77580 0.81106
2.4 0.61484 0.70079 0.64411 0.70941
2.6 0.45593 0.57161 0.48677 0.58410
2.8 0.28147 0.42287 0.31118 0.43963
3.0 0.09945 0.25987 0.12554 0.28107
3.2 -0.08272 0.08829 -0.06194 0.11388
3.4 -0.25864 -0.08588 -0.24371 -0.05620
3.6 -0.42307 -0.25669 -0.41342 -0.22350
3.8 -0.57177 -0.41827 -0.56608 -0.38241
4.0 -0.70107 -0.56512 -0.69790 -0.52773
4.2 -0.80745 -0.69228 -0.80594 -0.63473
4.4 -0.88721 -0.79547 -0.88767 -0.75934
4.6 -0.93641 -0.87123 -0.94056 -0.83825
4.8 -0.95124 -0.91703 -0.96203 -0.88902
5.0 -0.92862 -0.93138 -0.94961 -0.91020
5.2 -0.86710 -0.91381 -0.90146 -0.90121
5.4 -0.76771 -0.86492 -0.81711 -0.86255
5.6 -0.63434 -0.78635 -0.69815 -0.79563
5.8 -0.47368 -0.68071 -0.54872 -0.70274
6.0 -0.29439 -0.55149 -0.37551 -0.58703
6.2 -0.10598 -0.40299 -0.18717 -0.45231
6.4 0.08258 -0.22558 0.00672 -0.30299
6.6 0.26374 -0.06015 0.19691 -0.14391
6.8 0.43198 0.10715 0.37555 0.01979
7.0 0.58355 0.28009 0.53682 0.18290
7.2 0.71613 0.44478 0.67707 0.34025
7.4 0.82779 0.59627 0.79428 0.48686
7.6 0.91635 0.72909 0.88737 0.61813
7.8 0.97878 0.83897 0.95535 0.72996
8.0 1.01111 0.92224 0.99664 0.81891

0O
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Table 6. Comparison of Results for F2 Showing Effect of the Gas

Dynamic Index (M) - (F 1 = O, F1' 1, F2  0, F2' = 0, G1 = 0,

G1 0, G2 = 0, G2 ' 0 0) - Unstable Case - (n = 75) - Standing Waves

1= 1 ji=0

K= 1 K= 1

t Exact Perturbation Exact Perturbation
Solution Solution Solution Solution

0.2 0.00013 -0.00548 0.00003 -0.00316
0.4 0.00124 -0.01544 0.00054 -0.01172
0.6 0.00473 -0.02691 0.00257 -0.02333
0.8 0.01210 -0.03643 0.00752 -0.03484
1.0 0.02443 -0.04077 0.01670 -0.04288
1.2 0.04197 -0.03749 0.03089 -0.04728
1.4 0.06387 -0.025518 0.04994 -0.03793
1.6 0.08806 -0.005425 0.07263 -0.02258
1.8 0.11143 0.02061 0.0966 0.00033
2.0 0.13027 0.049007 0.1186 0.02813
2.2 0.14082 0.07537 0.13504 0.05696
2.4 0.14005 0.09513 0.14236 0.08237
2.6 0.12628 0.10426 0.13796 0.09995
2.8 0.09967 0.10004 0.12064 0.10606
3.0 0.06242 0.08152 0.09109 0.09851
3.2 0.01860 0.04984 0.05192 0.07688
3.4 -0.02636 0.008166 0.0076 0.04283
3.6 -0.06636 -0.03858 -0.03628 -0.00096
3.8 -0.09548 -0.08436 -0.07362 -0.046816
4.0 -0.10889 -0.12285 -0.09877 -0.09134
4.2 -0.10354 -0.14826 -0.10733 -0.12758
4.4 -0.07873 -0.15626 -0.09688 -0.15016
4.6 -0.03636 -0.14461 -0.06742 -0.15524
14.8 0.01909 -0.11361 -0.02153 -0.14104
5.0 Q.08104 -0.06617 0.03583 -0.10827
5.2 0.14148 -0.00758 0.09778 -0.06010
5.4 0.19206 0.055118 0.15638 -0.00186
5.6 0.22528 0.11399 0.20358 0.05954
5.8 0.23565 0.16121 0.23235 0.11651
6.0 0.22067 0.19016 0.23779 0.16168
6.2 0.18130 0.19633 0.21796 0.18888
6.4 0.12201 0.17793 0.17434 0.19397
6.6 0.05019 0.13633 0.11182 0.17547
6.8 -0.02482 0.07595 0.03808 0.13477
7.0 -0.09302 -0.02526 -0.03737 0.07614
7.2 -0.14503 -0.07144 -0.10448 0.006209
7.4 -0.17338 -0.140235 -0.15407 -0.06680
7.6 -0.17347 -0.19368 -0.17900 -0.13401
7.8 -0.14428 -0.22450 -0.17519 -0.18700
8.0 -0.08859 -0.22808 -0.14216 -0.21888

I I ~,.
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Table 7. Comparison of Results for F1 Showing the Effects of the

Correction Variable (K) - (F, = 0, F1, = 1, F2  0, F2 = 0, G, = 0,

GI 0, G2  0 0, G2 = 0) - Unstable Cases (n = 70) - Standing Waves

1=1 i=1 i=O

K 1 K 0 K= 0

SExact Perturbation Exact Perturbation Analytic
Solution Solution Solution Solution Solution

0.2 0.19699 0.187155 0.19670 0.19687 0.19675
0.4 0.38335 0.36462 0.38172 0.38261 0.38217
0.6 0.55251 0.52587 0.54791 0.55028 0.54942
0.8 0.69850 0.66615 0.68878 0.69371 0.69249
1.0 0.81604 0.78072 0.79865 0.80767 0.80630
1.2 0.90066 0.86596 0.87280 0.88811 0.88696
1.4 0.94887 0.91928 0.90775 0.93226 0.93184
1.6 0.95842 0.93925 0.90166 0.93878 0.93468
1.8 0.92863 0.92554 0.85477 0.90772 0.91061
2.0 0.86067 0.87904 0.76962 0.84061 0.84612
2.2 0.75771 0.80166 0.65109 0.74802 0.74903
2.4 0.62481 0.69648 0.50590 0.61107 0.62333
2.6 0.46860 0.56735 0.34194 0.45807 0.47407
2.8 0.29658 0.41903 0.16733 0.26849 0.30714
3.0 0.11649 0.25679 -0,01027 0.10616 0.12906
3.2 -0.06441 0.08639 -0.18416 -0.05313 -0.05327
3.4 -0.23973 -0.08618 -0.34860 -0.25962 -0.23280
3.6 -.0.40414 -0.25497 -0.49854 -0.42949 -0.40262
3.8 -U.55318 -0.41415 -0.62912 -0.58151 -0.55621
4.0 -0.68301 -0.55829 -0.73533 -0.70960 -0.68766
4.2 -0.78998 -0.68250 -0.81197 -0.80859 -0.79192
4.4 -0.87041 -0.78258 -0.85399 -087449 -0.86494
4.6 -0.92055 -0.85525 -0.85736 .-0.90458 -0.90388

4.8 -0.93689 -0.89811 -0.82008 -0.89755 -0.90718
5.0 -0,91671 -0.90981 -0.74306 -0.85356 -0.87463

S5.2 -0.85886 -0.89005 -0.63045 -0.80213 -0.80736
5.4 -0.76447 -0.83962 -0.48925 -0.66264 -0.70785
5.6 -0.63724 -0.76029 -0.32818 -0.52309 -0.57982
5.8 -0.48340 -0.65486 -0.15634 -0.36111 -0.42807
6.0 -0.31100 -0.52691 0.01809 -0.18308 -0.25835
6.2 -0.12888 -0.38083 0.18852 -0.07645 -0.07712

S6.4 0.05445 -0.22156 0.34995 0.10764 0.10864
6.6 0.23170 -0.05445 0.49844 0.37422 0.29176
6.8 0.39723 0.11485 0.63023 0.46032 0.46509
7.0 0.54707 0.28072 0.74089 0.69003 0.62177
7.2 0.67846 0.43759 0.82500 0.81052 0.75551
7.4 0.78917 0.58027 0.87632 0.89873 0.86085o 7.6 0.87687 0.70394 0.88888 0.95061 0.93330
7.8 0.93868 0.80457 0.85847 0.96357 0.96962
8.0 0.97109 0.87877 0.78419 0.93647 0.96786

0
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Table 8. Comparison of Results for F2 Showing the Effects of the
Correction Variable (K) - (F 1  0, F1 ' rF 0, F1 1F2 0,O F2t

O 0, G2  0 0, G2 ' = Q) - Unstable Cases (n 70) - Standing Waves

I 1 0

Petrbto K=0
t Exact Perturbation xactAnalyticSolution Solution Solution Solution Solution

0.2 0.00013 -0.00527 0.00017 -0.00562 -0.003360.4 0.00120 -0.01466 0.00165 -0.0±557 -0.012190.6 0.00456 -0.02534 0.00619 -0.02603 -0.023430.8 0.01160 -0,03411 0.01544 -0.03276 -0.033051.0 0.02332 -0.03789 0.03024 -0.03218 -0.037091.2 0.00332 -0.03451 0.05013 -0.02232 -0,032641.4 0,06057 -0.022gg 0.07306 -0.01862 -0,018651.6 0.08330 -0.00396 0.09555 0.02±911 0.003671.8 00105±7 0.02047 0.11324 0.04915 0.030932.0 0.12271 0.04692 0.12170 0.07263 0.058102.2 0413242 0.07126 0.11751 0.08675 0,079472.4 0.13150 0.08922 0.09917 -0.087046 0.089782.6 0.11839 0.097153 0.06770 0,0711 0.085352.8 0.09328 0.11651 0.02679 0.04063 0.065023.0 0205822 0.07467 -0.01761 -0,001408 0.030533.2 0.01701 0,04468 -0.05827 -0M04828 -0.013463.4 -0.02528 0.00567 -0.08789 -0.09196 -0.060053.6 -0,06295 -0,03775 -0.10041 -0.12426 -0.101223.8 -0 -0.0799 -0.09221 -0.13827 -0,129194.0 -007 -0.150 -0.06290 -0.12986 --0.137854.2 -0.09872 -0.13779 -0.01566 -0.09854 -0.124034.4 -0.07590 -0.1442 0.04299 --0.04785 -0.088254.6 -0.03665 -0.13261 0.10404 0.01493 -0.034904.8 0.01487 -0.1032 0.15731 0.07988 -0.028285.0 0.07254 -0.05894 0.19315 0,13602 0.09±315.2 0.12595 -0.00478 0.20424 0.17311 0.143575.4 0.17637 0.05266 0.18706 0.183575 0.175585.6 0.20783 0.10617 0,14284 0.163922 0.180705.8 0.21824 0.14862 0.07764 0.11562 0.156406.0 0.20519 0.17409 0.00147 0.04509 0.105456.2 0.16949 9.17865 -0.'733 -0.03703 0.033316.4 0.11514 0.16089 -0,13397 -0.11757 -0.037816.6 0.04883 0.12229 -0.16972 -0.182899 -0.1256-4.8 -0.02090 0.06705 -0.17346 -0.22122 -0.18709
7.0 -0.08483 0.00165 -0.14308 -0.22468 -0.221257.2 -0.13429 -0.06592 -C.0$205 -0.19089 -0,221117.6 -0.16228 -0.12723 0.00095 -0.12367 -0.184957.6 -0.1b40. 10.17333 0.09392 -0.03255 -0.116907.8 -0.13960 -0.20087 0.17949 0.06839 -0.026528.0 -0.09020 -0.2±857 0.24521 0.16275 0.07753



Table 9. Comparison of Stability Boundaries Based on the I'lteraction
Index (n) (F,1  0 , Fr I F2  0, F2  • 01 0, G 9' 0

02 a O, G2' 0 0) - Standing Waves - Epsilon - 0.1

Stability Boundaries
Gas Dynamic Index Exact Solution -Pe-Rcu-rba n SOution

Correction Variable n - Stable - Unstable n - Stable - Unstable

i 1 67.5 -69 67.5 - 69Ku

(7. ._1__ _,_i,__ _,_,__,_i_

1 0 72 -72.5 72.5 -73

K=0 45 -50 45 -50
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Table 10. Comparison of Stability Boundaries Based on the Interaction

Index (n) - (F1 a 0, r 1 ' X -I F2 a 0, F2 o. 0, GI a 1, GI 0,

G2 a O, G2  =0) - Traveling Waves - Epsilon - 0.1

Stability Boundaries

Gas Dynamic Index Exact Solution Perturbation Solution
Correction Variable n - Stable - Unstable n - Stable - Unstable

K 1 27.5 - 28 31.5 - 32

1=0
1 1 30 - 31 36.35 - 36.5

K31
K =0 25 -30 25-30

SI

* •
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approximate analytical stability equations ('4.31) and (4.52). The

perturbation method tends to predict slightly higher stability limits

than the exact solution method for both standing and traveling waves,

Within the accuracy of the tabulated values, this is apparent only in

the first two rows of Table 10.

In Table 11, a comparison of the effect of different initial

conditions imposed on the stability boundaries for both standing and

traveling waves Is presented. From the results of two sets of initial

conditions for each case, it can be seen that the varying of initial

conditions has no significant effect on the stability boundaries for

both standing waves or traveling waves.

In Table 12, the variation of the stability limit with c is

presented for standing waves. From Table 12, the results show that the

smaller the term epsilon the greater the stability limit. Therefore,

the order term has a significant effect on the interaction index. In

Chapter 4, a relation was proposed for the case of i = 0 and K = 0

L. which was n = C/c where C is a constant. Assuming the validity of the

relation, the values for this constant are given for each given epsilon

and interaction index. This shows that, in general, C is a weak function

of C.

In Table 13, a comparison of the effect of c is presented for

traveling waves when both gas dynamic nonlinearities and correction

variables are considered. Again, the results show that the smaller the

team epsilon, the greater the stability limit. The perturbation method

again predicts slightly greater stability limits than does the exact

solution method. Therefore, again, the order term has a strong effect

concerning the stability of combustion.
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Table 11. Comparison of the Effect of Different Initial Conditions

Imposed for Standing and Traveling Waves for i a I arid K a 1

Epsilon a 0.1

(a) Standing Waves - 1. 71 * 0, F1' 1, F2 a 0, F2  0

G1 a 0, G1 ' " 0, G2 a 0, G2 ' * 0

2. F1 a 1, Fr - 0, F2  0, F2 0

G1 a 0, G1 ' , 0, G2 a 0, G2 * 0

Stability Boundaries

Initial Condition Exact Solution -perturbation Solution
Sets n - Stable - Unstable n - Stable - Unstable

"1. 67.5 - 69 67.5 - 69

2. 65 -70 65 -70

(b) Traveling Waves - 1. F, = 0, F1 ' = -1, F2 = 0, F2' 0

G1 a 1, G1 = 0, G2 = O, G2  0

2. F1 a 1, F1 ' 0 0, F2  0, F2 I 0

G, = 0, G1i w -1, G2  , 0 2 G 0

Stability Boundaries

Initial Condition Exact Solution Perturbation Solution
Sets n - Stable - Unstable n - Stable - Unstable

1. 27.5 - 28 31.5 - 32

2. 27.5 - 28.5 31 - 31.5

I! "
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Table 12. Comparison of the Effects of the Order Term Epsilon -

(F 1 a 0, FF 2  0 ,9 F2' 0, GI a 0, GI * 0, G2 x 0,

G2* 0) - Standing Waves - when i 1 1, K a I

Stability Boundaries

Exact Solution Perturbation Solution Constant
Epsilon n - Stable - Unstable n - Stable - Unstable C a ne

0.05 107.5 - 110 107.5 - 110 5.5

0.1 67.5 - 69 67.5 - 69 6.9

0.2 48.5 - 49.5 48.5 - 49.5 9.8

L

0
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Thus, from these representative tables of results, it is observed

u that the correction variable is important in the stability of standing

waves, but does not play a major role in the stability of traveling waves.

It is observed that the gas dynamic nonlinearities seem to have little

U) influence on the stability of either standing or traveling waves. It

is observed that initial conditions of the modal amplitudes have little

or no influence in the stability of either standing or traveling waves.

And finally, it is observed that the order term epsilon and the inter-

action index governing the strength of combustion in the process are

strongly coupled thus affecting the limits of stability.

Before completing this chapter, it is desired to investigate the

sign discrepency mentioned previously between the exact and perturbation

solutions for f which occur near t = 0. For simplicity, it will be

assumed that I a K z 0 and that for t << I the first modal amplitude can

be represented with sufficient accuracy by f= sint. Then, the

$ equation for f 2 will be solved and the result simplified for t << 1.

U This will be done first for 0 and then for ý 0 0. For 0,

(3.21) leads to

U d2 f

dt21+ 4f 2 z c•n U- cos2J (5.1)

with initial conditions

f 2 (0) 0

C)
f 2'(0) 0.
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Evalu Lhe homogeneous and particular solutions by the usual manner

and evaluating the constants, the results become

2 i"T n[ I -°2t - t in2s. (5.2)

In terms of the perturbation parameters (4.1), equation (5.2) can be

written as

f = n 0( - cos2) - n sin2 (5.3)2 16

To the order of approximation c which the perturbation solution should

model, equation (5.3) becomes

f 2 16 ýnn sin2C + 0(c). (54)

By expanding equation (5.2) into a Taylor series expansion of three terms,

equation (5.2) becomes

f 1 _Znt4 + (5.5)2 24 . .

which is always positive.

Therefore, the exact method for small time will yield f 2 modal

amplitude always as a positive quantity.

By imposing identical conditions to the perturbation equations

(4.12), the result becomes
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dB

U ~dn I - n

with the condition

B (0) 0.2

Solving equation (5.6),

B - _ nn. (5.7)
16

which is identical to the result of equation (5.4) for the wave equation

solution. Thus, the perturbation method gives the correct result. It

can be seen that for t < 1 the exact solution predicts a positive f+

and by inspection of equation (5.8), the perturbation method predicts a

negative f 2 " This is precisely the behavior observed in the numerical

solutions.

For 0 • 0, a similar analysis can be performed. The appropriate

U equation for f is now
2

d2f df r
-d1 + + 4f2  kcwn[ I cos2t (5.9)

A)
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with conditions

f2(0) 0
2

f2'(0) a O.

Solving the homogeneous and particular solution by the usual manner and

evaluating the appropriate constants the result becomes

f2 e-w/2t r ~ 1 cos '±
-s166 0 2 2

___ 1= t)1

1n2 • (5.10)

Expanding (5.10) for small ; into the appropriate Taylor series, expanding

and neglecting terms of 0(ý) leads to

f =- n - cos2t - t sin2 (5.11)

which is identical to (5.2).

By imposing the identical conditions on t:he perturbation equation

(4.12), the resulting equation become

d 1
d " i •n (5.12)

with the condition

S
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B 2 2(0) --0.

Solving equation (5.12) by the usual manner, evaluating the constants,

and transforming the perturbation variables to real time variables

2 8 '-e •sin 2 t (5.13)

This is always negative for t << 1. Expanding the exponential function

by the Taylor series expansion and neglect terms of o(ý) leads to

.f2 n sin 2E + 0(c) (5.14)

which is identical to (5.8).

To observe the behavior of equation (5.10) for small time,

expand this equation into a Taylor series of O(t4 ). Expanding and

grouping terms according to their order of magnitude, the terms of

0(1), 0(t), O(t 2 ), 0(t 3 ) vanish. Therefore, f 2 is comprised of terms

from O(t 4 ) which is

f= - 1 + 8 + 64 (5.15)

Again, for any small time t, f 2 is always positive since t is always

positive. Neglecting higher powers of ;, the resulting equation becomes

equation (5.5) for the undamped case. Again it can be seen that the

exact and perturbation methods predict opposite signs for f 2 when t << 1.
TiThese results are based on approximations and cannot be considered

I9
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definitive. They do, however, lend plausibility to the numerical results

discussed earlier. It is believed that this sign discrepancy is due

to the inability of the perturbation solution to accurately represent

the exact solution for t < 1 and not due to any error in the computer

program used to compute the perturbation solution.

1i

K



Chapter 6

CONCLUSION AND RECOMMENDATIONS

The primary objective of this presentation has been the development

of analytical techniques to solve the problem of combustion instabilities

occurring in an annular combustion chamber. The analytical techniques

used were the modified Galerkin method applied to the acoustic wave

equations which yielded a set of time-dependent modal amplitude equations

and the two-variable perturbation method which yield a set of time-

dependent equations which approximated the behavior of the first set of

equations. Both methods produced results which were relatively easy to

apply and used the Runge-Kutta algorithm which required little computation

time. An alternative approach to solve this problem would be a finite

difference approach. However, difficulties can be foreseen in the

development of the finite difference equations modelling the problem

along with the complications occurring due to the boundary conditions of

the problem. Thus, the benefits of the methods discussed in this thesis

can be appreciated.

From the numerical and graphical presentation of results in Chapter

5, the following observations can be made. First, the effect of the gas-

dynamic nonlinearities seems to be small in both methods of analysis for

velocity sensitive combustion. This point can be observed from a

quantitative comparison of the tabular results or by observing the effects

of this condition on the stability boundaries. Second, the effect of the

11
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correction variable modelling the physical boundaries of the chamber seems

to have a significant effect in both methods of analysis for velocity

sencitive combustioný By including the effect of this correction variable,

a significant increase occurs in the interaction index which is the

criteria for the stability of the system. However, this effect seems to

be more significant for the standing wave case than the traveling wave

cases. The effects of initial conditions for the time dependent equations,

the numerical value for the burning rate and step size of integration, ),•

seem to have very little significance in the measure of the stability

limits of velocity sensitive combustion. However, the order term epsilon

has a strong effect upon the stability of the problem. This is to be

excepted since the order term is the measure of the effect of non-

linearities occurring inthe system. The increase in this value corresponds

to a decrease in the stability limit which is physically reasonable.

In this study, the effect of time delay of the combustion process

was neglected. However, time delay has been found in other studies to

be an important phenomena in correctly modelling the actual problems of

velocity sensitive combustion. It is recommended that this effect can

be incorporated by including the corresponding terms withJ = I in the

acoustic wave equations (3.20). A corresponding set of perturbations can

then be derived to account for time delay and both these equations and

equations (3.20) can be numerically evaluated by modifing the existing

Runge-Kutta programs presented in the Appendices. It is also recommended

that an experimental program be developed to measure the effects of

velocity sensitive combustion in an annular combustion chamber. Once

achieving this goal, one could correlate the measurement results to -he

analytical results that have been presented to ascertain the validity of

this analysis.

j:e
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Since instability of combustion is sensitive to small changes in

engine geometry and operating conditions, a particular engine must be

subjected to a large number of firings before its designers can say

confidently that it is free from instability. With a large engine such

testing can account for a substantial part of development costs. Herein

lies the importance of devising reliable theories of instability and

inexpensive tests of a propellant's acoustical characteristics. Until iJ

instability of combustion is understood well enough so that it can be

eliminated while an engine is in the design stage, rocket engines must

continue to be intensively tested for stability-- particularly when -'

the lives of astronauts will eventually depend on safe, reliable

operation of the engine C17].
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APPENDIX A
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GENERAL TIME DELAY FUNCTION
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GENERAL TIME DELAY FUNCTION

The development and nature of the time-delay function is of the

same form of the convolution integrai for impulse response in vibration

theory. The general form of the time delay function is

dw 0
w(t) J J(t- d) d& dc . (A.1)

0

A simple illustration of the time delay function is in the case of a

finite step function J(t).

J(t)
S~1"

(some specific time constant)

Figure Al. Step Function J(t)

From the figure, the step function J(t) is defined as

0t > " (A.2)

Therefore, substituting some time delay (t - C) for time t, the result is

119
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[,or
J(t •

0 t - > T (A.3)

Graphically representing equation (A.2) results in Figure A2.

J(t-~

0 t-t

Figure A2. Step Time Delay Function J(t - F)

Substituting into the general time-delay integral the particular step

function in terms of the non-dimensional variable C

gt T dw 1t d 0S•t) 0 0 d C 1 0 'd

0 t -T.

Therefore, simplifying equation (A.3)

W(t) a w0 (t) - w(t - T) (A.5)

where w 0 (t) is a generalized function of time and w (t - T) is

functional time delay.
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APPENDIX B

RUNGE-KUTTA PROGRAM OF THE MODAL

AMPLITUDE WAVE EQUATIONS
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ACOUSTIC PRESSURE DERIVATION

To calculate expressions for acoustic pressure, recall equation

(2.48) which stated

p p = ej (F.1)

This equation represents the unsteady state deviations of acoustic

pressure. When expanding equation (F.1) into a Taylor series expansion,

the resulting equation becomes

p p e 34 + 2 ýý + +)I
at az (atJ J

+ . .. . (F.2)

Recall that the steady state solution was represez,ted in equation (2.35) by it

p e V5 -Z)

When expanding (F.3) into its Taylor series expansion, the result becomes

=1- ½2 (1i) 2 *(F)

P 1 + (F.4dzi

|,;rz-'
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where ins the steady state acoustic pressure. Therefore, the difference

in general acoustic pressure and steady state pressure can be expressed

by subtracting equation (r.4) from ([.2). For this investigation, a

restriction en the velocity potential # was that it was a function of 0

and t only. In doing this, the pressure difference equation becomes

4 4

Using the same Fourier series expansion for the velocity potential * as

expressed in equation (3.18), the acoustic pressure difference equation

([.5) can be expressed in terms of the product of modal amplitudes and

trignometric function in the transverse e direction. Substituting the

appropriate forms of equation (3.18) into equation (F.5) and simplyfying,

the resulting pressure difference equation become

[ dfII dg dg df df

+ __ + (f f (-- - 2-) + -2

+ t cos20+ L i, £ (g •g 1 g) + ½kt• trY• cs

dt 1 Ht

r dg1  r df dg dS+4 (f - fg) + dt sino

F- + 4dqt sn0([r.6)
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Since the coeffi~cients in equation (F.6) are functions of time only,

these coefficients have been included in the calculations of the program

in Appendix B. Thus, for any given angle 0, values for the modal

amplitude at any given timAe range can be calculated therefore determining

the acoustic pressure difference of that desired location.
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